Amazon SageMaker
すべてのデータ、分析、AI の統合基盤となる次世代の Amazon SageMaker
概要
広く採用されている AWS の機械学習 (ML) と分析機能をまとめた Amazon SageMaker は、分析と AI のための統合エクスペリエンスを、すべてのデータに対する統合アクセスとともに提供します。モデル開発、生成 AI、データ処理、SQL 分析のための使い慣れた AWS ツールを使用して、統合スタジオからより迅速にコラボレーションして構築できます。これは、ソフトウェア開発のための極めて有能な生成 AI アシスタントである Amazon Q Developer によって加速されます。データレイク、データウェアハウス、サードパーティーまたはフェデレーテッドデータソースのいずれに保存されているかにかかわらず、すべてのデータにアクセスし、組み込みガバナンスを活用して、企業のセキュリティニーズに対応できます。
利点
次世代の SageMaker を知る

特徴
次世代の Amazon SageMaker が実際に機能している様子をご覧ください

お客様
トヨタ
「自動車事業全体に散在するサイロ化されたデータセットに対処することを目的として、コネクテッドカー、販売、製造、サプライチェーン部門全体のデータを統合および管理するのに役立つよう、Amazon SageMaker を実装しています。このアプローチにより、データを簡単に検索、検出、共有して、品質問題を未然に防ぎ、顧客満足度を高め、生成 AI アプリケーションのより容易な開発を可能にするための基礎を築くことができるようになります」
TMNA、VP of Data, Analytics, Platforms, and Data Science、Kamal Distell 氏
Charter Communications
Charter Communications は、Amazon Redshift と Amazon SageMaker を利用してイノベーションを促進し、効率性を高めています。
Lennar
「当社は、費用対効果の高いクラス最高レベルのソリューションを利用するために、過去 18 か月間にわたって AWS と協力し、データ基盤を変革してきました。Amazon SageMaker Unified Studio や Amazon SageMaker Lakehouse などの進歩により、当社は、データやサービスへのシームレスなアクセスによって配信速度を加速し、エンジニア、アナリスト、サイエンティストが当社のビジネスに重要な価値をもたらすインサイトを明らかにできるようにしています」
Lennar、SVP of Data and Analytic、Lee Slezak 氏
Carrier
「Carrier では、次世代の Amazon SageMaker がデータ製品の構築とスケールの方法を合理化することで、エンタープライズデータ戦略を変革しています。SageMaker Unified Studio のデータディスカバリー、処理、モデル開発へのアプローチにより、レイクハウスでの実装が大幅に高速化しました。最も印象的なのは、既存のデータカタログと組み込みのガバナンスコントロールとのシームレスな統合により、セキュリティ基準を維持しながらデータアクセスを民主化できるようになったことです。これにより、チームは企業全体に高度な分析と AI ソリューションを迅速に提供できます」
– Carrier、Director of Data Platform & Data Engineering、Justin McDowell 氏

NatWest Group
「当社の Data Platform Engineering チームは、データエンジニアリング、ML、SQL、生成 AI のタスク用に複数のエンドユーザーツールをデプロイしてきました。銀行全体のプロセスを簡素化するために、ユーザー認証とデータアクセス承認の合理化を検討してきました。Amazon SageMaker は既製のユーザーエクスペリエンスを提供してくれるので、組織全体に 1 つの環境をデプロイでき、データユーザーが新しいツールにアクセスするのに必要な時間を約 50% 短縮できます」。
NatWest Group、CDAO、Zachery Anderson 氏

今日お探しの情報は見つかりましたか?
ぜひご意見をお寄せください。ページのコンテンツ品質の向上のために役立てさせていただきます。