Amazon Web Services ブログ

Category: General

タイムラインビューで AWS CloudFormation のデプロイの内部を覗く

CloudFormationコンソールに視覚的で直感的なイベントのビューを提供する deployment timeline view という新機能が登場しました。この機能はスタック操作で CloudFormation が実行した一連のアクションを視覚化します。この機能が提供する視覚的なタイムラインは、リソースがプロビジョニングされた正確な順序、リソース間の依存関係、プロビジョニングにかかった時間を示します。デプロイが失敗した際は根本原因と考えられる箇所を示します。デプロイの舞台裏で起きていることについての追加コンテキストと可視性を提供することで既存の表形式のビューを補完します。

Amazon Bedrock Guardrails を使用したモデルに依存しない安全対策を実装する

生成 AI モデルは幅広いトピックに関する情報を生成できますが、その応用には新たな課題があります。これには関連性の維持、有害なコンテンツの回避、個人を特定できる情報(PII)などの機密情報の保護、ハルシネーション(幻覚)の軽減が含まれます。Amazon Bedrock の基盤モデル(FM)には組み込みの保護機能がありますが、これらはモデル固有であることが多く、組織のユースケースや責任ある AI の原則に完全に合致しない可能性があります。

日本の SaaS ビジネスのさらなる成長のために、AWS Japan がソフトウェア企業に提供する「AWS SaaS 支援プログラム」の提供を開始

みなさん、こんにちは。事業開発統括本部、ソリューション事業開発本部、SaaS 領域の事業開発をしている三石です […]

IQVIAサービシーズ ジャパン合同会社 の AWS 生成 AI 事例: Bedrock の Knowledge Base を利用した社内 RAG チャットシステムの構築

本ブログは、IQVIA サービシーズ ジャパン合同会社 と Amazon Web Services Japan が共同で執筆しました。IQVIA サービシーズ ジャパンでは、臨床試験や市販後調査(PMS)、医薬品関連文書の作成等の業務において、日本における医薬品の臨床試験の実施の基準に関する省令や治験業務を行う上での規制のように一般に公開されているドキュメントの内容を確認する必要がたびたび発生します。それらの症例や規制の内容について疑問がある場合にはガイドブックやウェブで公開されている情報を元に手作業で調査を行っていましたが、この調査に時間がかかることが課題になっていました。
調査効率の向上のために、IQVIA サービシーズ ジャパンでは Amazon Bedrock のナレッジベースを用いた RAG(Retrieval-Augmented Generation) ベースの AI チャットソリューションを構築しました。Amazon Bedrock のナレッジベースは、データソースへのカスタム統合を構築してデータフローを管理することなく、取り込みから取得、迅速な拡張まで、RAG ワークフロー全体を実装するのに役立つフルマネージド機能です。