Amazon Web Services ブログ
Category: Amazon SageMaker
AWS Weekly Roundup — Amazon Bedrock での Claude 3 Haiku の使用、AWS CloudFormation 最適化など — 2024 年 3 月 18 日
3月18日週はストレージの話題からお届けします。 3月11日週、Amazon Simple Storage S […]
データと AI でサプライチェーンの価値を引き出す
先月、2024 年のサプライチェーンについての予測ブログを共有しました。 このブログでは、複数のシステムに分散 […]
Amazon SageMaker JumpStartによるエンドポイントデプロイのベンチマークと最適化
大規模言語モデル (LLM) をデプロイする場合、機械学習 (ML) の担当者は通常、モデルサービングのパフォ […]
32,000トークン対応の商用利用可能な日本語チャットモデル CyberAgentLM2 をワンクリックで FineTune とデプロイ
このたび株式会社サイバーエージェントから公開されている大規模言語モデルである CyberAgentLM2-7B-Chat (CALM2-7B-Chat) が JumpStart から利用できるようになりました。今回 Amazon SageMaker Jumpstart から利用できるようになったモデルは、11月に同社から発表された次世代の CALM2 シリーズのチャット用途向けの CALM2-7B-Chat です。このモデルは 1.3 兆トークンの日本語と英語の公開データセットで学習された Transformer ベース(Llama)の CyberAgentLM2-7B (CALM2-7B) をチャット向けに教師有り学習でファインチューニングしたモデルです。入出力の長さとして 32,000 トークンに対応しており、日本語の文章として約 50,000 文字を一度に処理することができます。モデルは商用利用可能な Apache License 2.0 で提供されています。
八丈町立富士中学校:生成AIを活用したオリジナルチャットボットの制作
生成AIが急速に普及する中、文部科学省が2023年7月に「初等中等教育段階における生成AIの利用に関する暫定的 […]
AWSのサーバーレスと機械学習のサービスを活用した列車遅延予測機能の追加とその精度向上(小田急電鉄様の取り組み)
本投稿は小田急アプリや他社サービスなどに連携する列車遅延予測機能の追加とその精度向上の取り組みについて、実際に […]
Amazon OpenSearch Service のベクトルデータベース機能の説明
生成 AI ソリューションを構築したり、リッチメディアやオーディオを検索したり、既存の検索ベースのアプリケーションによりセマンティックな検索を加えたりするには、OpenSearch は有能なベクトルデータベースです。OpenSearch は様々なエンジン、アルゴリズム、距離尺度をサポートしており、適切なソリューションを構築することができます。OpenSearch は、低レイテンシで数十億のベクトルに対応できる、スケーラブルなエンジンを提供します。OpenSearch とそのベクトル DB 機能により、ユーザーは簡単に 8 フィートの青いソファを見つけ、暖かい火のそばでリラックスできます。
自動シャットダウンソリューションを使ってAmazon SageMaker Canvas のコストを最適化する方法
この投稿では SageMaker Canvas アプリケーションのコストをより最適化する新しい方法を紹介します。 SageMaker Canvas は現在、アプリの使用状況とアイドル時間に関するインサイトを提供する Amazon CloudWatch Metrics を収集しています。 お客様はこの情報を使用して、意図しないコストの発生を避けるために自動的にアイドル状態の SageMaker Canvas アプリケーションをシャットダウンできます。
AWS Innovate AI/ML and Data Edition 開催のお知らせ
特定のテーマにフォーカスし最新テクノロジーを学べるオンラインイベント AWS Innovate を2024年2月22日 (木) に開催します。今年最初の開催となる今回は、AI/ML and Data (人工知能、機械学習、データ) がテーマです。特に今回の AWS Innovate は生成 AI に焦点を当て、これから生成 AI に取り組む方も、すでに 生成 AI の取り組みを始めている方も楽しんでいただけるようにしました。具体的には、AWS の生成 AI サービス、AI/ML プラットフォーム、生成 AI の活用シーンを学ぶためのユースケースの紹介を主なトピックとして取り上げます。セッション以外にもハンズオンのコンテンツを用意しているので、手を動かしながら生成 AI を学ぶこともできます。
API と OSS 、蓄積したデータで精度を改善するならどちらの基盤モデルを選択すべきか : 質問回答編
本文書では、サービスや製品に蓄積したデータを活用した精度改善を視野に入れた場合、 API と OSS のどちらがコスト効率が良くなるのかを検証します。 API は Amazon Bedrock や ChatGPT などのサービス、 OSS は Hugging Face などで公開されている基盤モデルを GPU インスタンスでホスティングする利用形態を想定しています。本 2 つの手法でデータをプロンプトに組み込む、追加学習に使用した場合の精度とコストを比較します。