AWS Machine Learning Blog
Tag: Generative AI
Build an internal SaaS service with cost and usage tracking for foundation models on Amazon Bedrock
In this post, we show you how to build an internal SaaS layer to access foundation models with Amazon Bedrock in a multi-tenant (team) architecture. We specifically focus on usage and cost tracking per tenant and also controls such as usage throttling per tenant. We describe how the solution and Amazon Bedrock consumption plans map to the general SaaS journey framework. The code for the solution and an AWS Cloud Development Kit (AWS CDK) template is available in the GitHub repository.
Architect defense-in-depth security for generative AI applications using the OWASP Top 10 for LLMs
This post provides three guided steps to architect risk management strategies while developing generative AI applications using LLMs. We first delve into the vulnerabilities, threats, and risks that arise from the implementation, deployment, and use of LLM solutions, and provide guidance on how to start innovating with security in mind. We then discuss how building on a secure foundation is essential for generative AI. Lastly, we connect these together with an example LLM workload to describe an approach towards architecting with defense-in-depth security across trust boundaries.
Amazon SageMaker model parallel library now accelerates PyTorch FSDP workloads by up to 20%
Large language model (LLM) training has surged in popularity over the last year with the release of several popular models such as Llama 2, Falcon, and Mistral. Customers are now pre-training and fine-tuning LLMs ranging from 1 billion to over 175 billion parameters to optimize model performance for applications across industries, from healthcare to finance […]
Deploy foundation models with Amazon SageMaker, iterate and monitor with TruEra
This blog is co-written with Josh Reini, Shayak Sen and Anupam Datta from TruEra Amazon SageMaker JumpStart provides a variety of pretrained foundation models such as Llama-2 and Mistal 7B that can be quickly deployed to an endpoint. These foundation models perform well with generative tasks, from crafting text and summaries, answering questions, to producing […]
Create a web UI to interact with LLMs using Amazon SageMaker JumpStart
The launch of ChatGPT and rise in popularity of generative AI have captured the imagination of customers who are curious about how they can use this technology to create new products and services on AWS, such as enterprise chatbots, which are more conversational. This post shows you how you can create a web UI, which […]
Foundational data protection for enterprise LLM acceleration with Protopia AI
The post describes how you can overcome the challenges of retaining data ownership and preserving data privacy while using LLMs by deploying Protopia AI’s Stained Glass Transform to protect your data. Protopia AI has partnered with AWS to deliver the critical component of data protection and ownership for secure and efficient enterprise adoption of generative AI. This post outlines the solution and demonstrates how it can be used in AWS for popular enterprise use cases like Retrieval Augmented Generation (RAG) and with state-of-the-art LLMs like Llama 2.
Intelligent document processing with Amazon Textract, Amazon Bedrock, and LangChain
In today’s information age, the vast volumes of data housed in countless documents present both a challenge and an opportunity for businesses. Traditional document processing methods often fall short in efficiency and accuracy, leaving room for innovation, cost-efficiency, and optimizations. Document processing has witnessed significant advancements with the advent of Intelligent Document Processing (IDP). With […]
Optimize generative AI workloads for environmental sustainability
To add to our guidance for optimizing deep learning workloads for sustainability on AWS, this post provides recommendations that are specific to generative AI workloads. In particular, we provide practical best practices for different customization scenarios, including training models from scratch, fine-tuning with additional data using full or parameter-efficient techniques, Retrieval Augmented Generation (RAG), and prompt engineering.
Generative AI and multi-modal agents in AWS: The key to unlocking new value in financial markets
Multi-modal data is a valuable component of the financial industry, encompassing market, economic, customer, news and social media, and risk data. Financial organizations generate, collect, and use this data to gain insights into financial operations, make better decisions, and improve performance. However, there are challenges associated with multi-modal data due to the complexity and lack […]
FMOps/LLMOps: Operationalize generative AI and differences with MLOps
Nowadays, the majority of our customers is excited about large language models (LLMs) and thinking how generative AI could transform their business. However, bringing such solutions and models to the business-as-usual operations is not an easy task. In this post, we discuss how to operationalize generative AI applications using MLOps principles leading to foundation model operations (FMOps). Furthermore, we deep dive on the most common generative AI use case of text-to-text applications and LLM operations (LLMOps), a subset of FMOps. The following figure illustrates the topics we discuss.