AWS Machine Learning Blog

Run image classification with Amazon SageMaker JumpStart

Last year, AWS announced the general availability of Amazon SageMaker JumpStart, a capability of Amazon SageMaker that helps you quickly and easily get started with machine learning (ML). JumpStart hosts 196 computer vision models, 64 natural language processing (NLP) models, 18 pre-built end-to-end solutions, and 19 example notebooks to help you get started with using […]

Automate a centralized deployment of Amazon SageMaker Studio with AWS Service Catalog

This post outlines the best practices for provisioning Amazon SageMaker Studio for data science teams and provides reference architectures and AWS CloudFormation templates to help you get started. We use AWS Service Catalog to provision a Studio domain and users. The AWS Service Catalog allows you to provision these centrally without requiring each user to […]

Defect detection and classification in manufacturing using Amazon Lookout for Vision and Amazon Rekognition Custom Labels

Defect detection during manufacturing processes is a vital step to ensure product quality. The timely detection of faults or defects and taking appropriate actions are essential to reduce operational and quality-related costs. According to Aberdeen’s research, “Many organizations will have true quality-related costs as high as 15 to 20 percent of sales revenue.” The current […]

Dynamic A/B testing for machine learning models with Amazon SageMaker MLOps projects

In this post, you learn how to create a MLOps project to automate the deployment of an Amazon SageMaker endpoint with multiple production variants for A/B testing. You also deploy a general purpose API and testing infrastructure that includes a multi-armed bandit experiment framework. This testing infrastructure will automatically optimize traffic to the best-performing model […]

Deploy shadow ML models in Amazon SageMaker

Amazon SageMaker helps data scientists and developers prepare, build, train, and deploy high-quality machine learning (ML) models quickly by bringing together a broad set of capabilities purpose-built for ML. SageMaker accelerates innovation within your organization by providing purpose-built tools for every step of ML development, including labeling, data preparation, feature engineering, statistical bias detection, AutoML, […]

Optimize workforce in your store using Amazon Rekognition

April 2023 Update: Starting January 31, 2024, you will no longer be able to access AWS DeepLens through the AWS management console, manage DeepLens devices, or access any projects you have created. To learn more, refer to these frequently asked questions about AWS DeepLens end of life. In this post, we show you how to use […]

Generate a jazz rock track using Generative Artificial Intelligence

At AWS, we love sharing our passion for technology and innovation, and AWS DeepComposer is no exception. This service is designed to help everyone learn about generative artificial intelligence (AI) through the language of music. You can use a sample melody, upload your own melody, or play a tune using the virtual or a real […]

Announcing managed inference for Hugging Face models in Amazon SageMaker

Hugging Face is the technology startup, with an active open-source community, that drove the worldwide adoption of transformer-based models thanks to its eponymous Transformers library. Earlier this year, Hugging Face and AWS collaborated to enable you to train and deploy over 10,000 pre-trained models on Amazon SageMaker. For more information on training Hugging Face models […]

The following diagram illustrates this architecture.

Building algorithmic trading strategies with Amazon SageMaker

Financial institutions invest heavily to automate their decision-making for trading and portfolio management. In the US, the majority of trading volume is generated through algorithmic trading. [1] With cloud computing, vast amounts of historical data can be processed in real time and fed into sophisticated machine learning (ML) models. This allows market participants to discover […]

Bring your own model with Amazon SageMaker script mode

As the prevalence of machine learning (ML) and artificial intelligence (AI) grows, you need the best mechanisms to aid in the experimentation and development of your algorithms. You might begin with the several built-in algorithms in Amazon SageMaker that simply require you to point the algorithm at your data and start a SageMaker training job. […]