AWS Machine Learning Blog
Category: Learning Levels
HCLTech’s AWS powered AutoWise Companion: A seamless experience for informed automotive buyer decisions with data-driven design
This post introduces HCLTech’s AutoWise Companion, a transformative generative AI solution designed to enhance customers’ vehicle purchasing journey. In this post, we analyze the current industry challenges and guide readers through the AutoWise Companion solution functional flow and architecture design using built-in AWS services and open source tools. Additionally, we discuss the design from security and responsible AI perspectives, demonstrating how you can apply this solution to a wider range of industry scenarios.
Mitigating risk: AWS backbone network traffic prediction using GraphStorm
In this post, we show how you can use our enterprise graph machine learning (GML) framework GraphStorm to solve prediction challenges on large-scale complex networks inspired by our practices of exploring GML to mitigate the AWS backbone network congestion risk.
Unlock cost-effective AI inference using Amazon Bedrock serverless capabilities with an Amazon SageMaker trained model
Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies such as AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API, along with a broad set of capabilities to build generative AI applications with security, privacy, and responsible AI. In this post, I’ll show you how to use Amazon Bedrock—with its fully managed, on-demand API—with your Amazon SageMaker trained or fine-tuned model.
Efficiently build and tune custom log anomaly detection models with Amazon SageMaker
In this post, we walk you through the process to build an automated mechanism using Amazon SageMaker to process your log data, run training iterations over it to obtain the best-performing anomaly detection model, and register it with the Amazon SageMaker Model Registry for your customers to use it.
Using transcription confidence scores to improve slot filling in Amazon Lex
When building voice-enabled chatbots with Amazon Lex, one of the biggest challenges is accurately capturing user speech input for slot values. Transcription confidence scores can help ensure reliable slot filling. This blog post outlines strategies like progressive confirmation, adaptive re-prompting, and branching logic to create more robust slot filling experiences.
How TUI uses Amazon Bedrock to scale content creation and enhance hotel descriptions in under 10 seconds
TUI Group is one of the world’s leading global tourism services, providing 21 million customers with an unmatched holiday experience in 180 regions. The TUI content teams are tasked with producing high-quality content for its websites, including product details, hotel information, and travel guides, often using descriptions written by hotel and third-party partners. In this post, we discuss how we used Amazon SageMaker and Amazon Bedrock to build a content generator that rewrites marketing content following specific brand and style guidelines.
Implementing login node load balancing in SageMaker HyperPod for enhanced multi-user experience
In this post, we explore a solution for implementing load balancing across login nodes in Slurm-based HyperPod clusters. By distributing user activity evenly across all available nodes, this approach provides more consistent performance, better resource utilization, and a smoother experience for all users. We guide you through the setup process, providing practical steps to achieve effective load balancing in your HyperPod clusters.
How Twitch used agentic workflow with RAG on Amazon Bedrock to supercharge ad sales
In this post, we demonstrate how we innovated to build a Retrieval Augmented Generation (RAG) application with agentic workflow and a knowledge base on Amazon Bedrock. We implemented the RAG pipeline in a Slack chat-based assistant to empower the Amazon Twitch ads sales team to move quickly on new sales opportunities.
How AWS sales uses Amazon Q Business for customer engagement
In April 2024, we launched our AI sales assistant, which we call Field Advisor, making it available to AWS employees in the Sales, Marketing, and Global Services organization, powered by Amazon Q Business. Since that time, thousands of active users have asked hundreds of thousands of questions through Field Advisor, which we have embedded in our customer relationship management (CRM) system, as well as through a Slack application.
Talk to your slide deck using multimodal foundation models on Amazon Bedrock – Part 3
In Parts 1 and 2 of this series, we explored ways to use the power of multimodal FMs such as Amazon Titan Multimodal Embeddings, Amazon Titan Text Embeddings, and Anthropic’s Claude 3 Sonnet. In this post, we compared the approaches from an accuracy and pricing perspective.