AWS Machine Learning Blog
Category: Learning Levels
Build an ecommerce product recommendation chatbot with Amazon Bedrock Agents
In this post, we show you how to build an ecommerce product recommendation chatbot using Amazon Bedrock Agents and foundation models (FMs) available in Amazon Bedrock.
Build a generative AI image description application with Anthropic’s Claude 3.5 Sonnet on Amazon Bedrock and AWS CDK
In this post, we delve into the process of building and deploying a sample application capable of generating multilingual descriptions for multiple images with a Streamlit UI, AWS Lambda powered with the Amazon Bedrock SDK, and AWS AppSync driven by the open source Generative AI CDK Constructs.
Implementing advanced prompt engineering with Amazon Bedrock
In this post, we provide insights and practical examples to help balance and optimize the prompt engineering workflow. We focus on advanced prompt techniques and best practices for the models provided in Amazon Bedrock, a fully managed service that offers a choice of high-performing foundation models from leading AI companies such as Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API. With these prompting techniques, developers and researchers can harness the full capabilities of Amazon Bedrock, providing clear and concise communication while mitigating potential risks or undesirable outputs.
Connect the Amazon Q Business generative AI coding companion to your GitHub repositories with Amazon Q GitHub (Cloud) connector
In this post, we show you how to perform natural language queries over the indexed GitHub (Cloud) data using the AI-powered chat interface provided by Amazon Q Business. We also cover how Amazon Q Business applies access control lists (ACLs) associated with the indexed documents to provide permissions-filtered responses.
Build an end-to-end RAG solution using Knowledge Bases for Amazon Bedrock and the AWS CDK
In this post, we demonstrate how to seamlessly automate the deployment of an end-to-end RAG solution using Knowledge Bases for Amazon Bedrock and the AWS Cloud Development Kit (AWS CDK), enabling organizations to quickly set up a powerful question answering system.
Index website contents using the Amazon Q Web Crawler connector for Amazon Q Business
In this post, we demonstrate how to create an Amazon Q Business application and index website contents using the Amazon Q Web Crawler connector for Amazon Q Business. We use two data sources (websites) here. The first data source is an employee onboarding guide from a fictitious company, which requires basic authentication. We demonstrate how to set up authentication for the Web Crawler. The second data source is the official documentation for Amazon Q Business. For this data source, we demonstrate how to apply advanced settings to instruct the Web Crawler to crawl only pages and links related to Amazon Q Business.
Building automations to accelerate remediation of AWS Security Hub control findings using Amazon Bedrock and AWS Systems Manager
In this post, we will harness the power of generative artificial intelligence (AI) and Amazon Bedrock to help organizations simplify and effectively manage remediations of AWS Security Hub control findings.
Get the most from Amazon Titan Text Premier
In this post, we introduce the new Amazon Titan Text Premier model, specifically optimized for enterprise use cases, such as building Retrieval Augmented Generation (RAG) and agent-based applications. Such integrations enable advanced applications like building interactive AI assistants that use enterprise APIs and interact with your propriety documents.
GenASL: Generative AI-powered American Sign Language avatars
In this post, we dive into the architecture and implementation details of GenASL, which uses AWS generative AI capabilities to create human-like ASL avatar videos. GenASL is a solution that translates speech or text into expressive ASL avatar animations, bridging the gap between spoken and written language and sign language.
AWS empowers sales teams using generative AI solution built on Amazon Bedrock
Through this series of posts, we share our generative AI journey and use cases, detailing the architecture, AWS services used, lessons learned, and the impact of these solutions on our teams and customers. In this first post, we explore Account Summaries, one of our initial production use cases built on Amazon Bedrock. Account Summaries equips our teams to be better prepared for customer engagements. It combines information from various sources into comprehensive, on-demand summaries available in our CRM or proactively delivered based on upcoming meetings. From the period of September 2023 to March 2024, sellers leveraging GenAI Account Summaries saw a 4.9% increase in value of opportunities created.