AWS Machine Learning Blog
Category: Developer Tools
Develop generative AI applications to improve teaching and learning experiences
Recently, teachers and institutions have looked for different ways to incorporate artificial intelligence (AI) into their curriculums, whether it be teaching about machine learning (ML) or incorporating it into creating lesson plans, grading, or other educational applications. Generative AI models, in particular large language models (LLMs), have dramatically sped up AI’s impact on education. Generative […]
Unlocking language barriers: Translate application logs with Amazon Translate for seamless support
This post addresses the challenge faced by developers and support teams when application logs are presented in languages other than English, making it difficult for them to debug and provide support. The proposed solution uses Amazon Translate to automatically translate non-English logs in CloudWatch, and provides step-by-step guidance on deploying the solution in your environment.
SambaSafety automates custom R workload, improving driver safety with Amazon SageMaker and AWS Step Functions
At SambaSafety, their mission is to promote safer communities by reducing risk through data insights. Since 1998, SambaSafety has been the leading North American provider of cloud–based mobility risk management software for organizations with commercial and non–commercial drivers. SambaSafety serves more than 15,000 global employers and insurance carriers with driver risk and compliance monitoring, online […]
Build end-to-end document processing pipelines with Amazon Textract IDP CDK Constructs
September 2023: This post was reviewed and updated. Intelligent document processing (IDP) with AWS helps automate information extraction from documents of different types and formats, quickly and with high accuracy, without the need for machine learning (ML) skills. Faster information extraction with high accuracy can help you make quality business decisions on time, while reducing […]
Build custom code libraries for your Amazon SageMaker Data Wrangler Flows using AWS Code Commit
As organizations grow in size and scale, the complexities of running workloads increase, and the need to develop and operationalize processes and workflows becomes critical. Therefore, organizations have adopted technology best practices, including microservice architecture, MLOps, DevOps, and more, to improve delivery time, reduce defects, and increase employee productivity. This post introduces a best practice […]
Build flexible and scalable distributed training architectures using Kubeflow on AWS and Amazon SageMaker
In this post, we demonstrate how Kubeflow on AWS (an AWS-specific distribution of Kubeflow) used with AWS Deep Learning Containers and Amazon Elastic File System (Amazon EFS) simplifies collaboration and provides flexibility in training deep learning models at scale on both Amazon Elastic Kubernetes Service (Amazon EKS) and Amazon SageMaker utilizing a hybrid architecture approach. […]
Introducing Amazon CodeWhisperer, the ML-powered coding companion
We are excited to announce Amazon CodeWhisperer, a machine learning (ML)-powered service that helps improve developer productivity by providing code recommendations based on developers’ natural comments and prior code. With CodeWhisperer, developers can simply write a comment that outlines a specific task in plain English, such as “upload a file to S3.” Based on this, […]
Secure AWS CodeArtifact access for isolated Amazon SageMaker notebook instances
AWS CodeArtifact allows developers to connect internal code repositories to upstream code repositories like Pypi, Maven, or NPM. AWS CodeArtifact is a powerful addition to CI/CD workflows on AWS, but it is similarly effective for code-bases hosted on a Jupyter notebook. This is a common development paradigm for Machine Learning developers that build and train […]
Improve your data science workflow with a multi-branch training MLOps pipeline using AWS
In this post, you will learn how to create a multi-branch training MLOps continuous integration and continuous delivery (CI/CD) pipeline using AWS CodePipeline and AWS CodeCommit, in addition to Jenkins and GitHub. I discuss the concept of experiment branches, where data scientists can work in parallel and eventually merge their experiment back into the main […]
Create a cross-account machine learning training and deployment environment with AWS Code Pipeline
A continuous integration and continuous delivery (CI/CD) pipeline helps you automate steps in your machine learning (ML) applications such as data ingestion, data preparation, feature engineering, modeling training, and model deployment. A pipeline across multiple AWS accounts improves security, agility, and resilience because an AWS account provides a natural security and access boundary for your […]