AWS Machine Learning Blog
Category: Amazon SageMaker
Introducing Stable Diffusion 3.5 Large in Amazon SageMaker JumpStart
We are excited to announce the availability of Stability AI’s latest and most advanced text-to-image model, Stable Diffusion 3.5 Large, in Amazon SageMaker JumpStart. In this post, we provide an implementation guide for subscribing to Stable Diffusion 3.5 Large in SageMaker JumpStart, deploying the model in Amazon SageMaker Studio, and generating images using text-to-image prompts.
Improve governance of models with Amazon SageMaker unified Model Cards and Model Registry
You can now register machine learning (ML) models in Amazon SageMaker Model Registry with Amazon SageMaker Model Cards, making it straightforward to manage governance information for specific model versions directly in SageMaker Model Registry in just a few clicks. In this post, we discuss a new feature that supports the integration of model cards with the model registry. We discuss the solution architecture and best practices for managing model cards with a registered model version, and walk through how to set up, operationalize, and govern your models using the integration in the model registry.
Build a reverse image search engine with Amazon Titan Multimodal Embeddings in Amazon Bedrock and AWS managed services
In this post, you will learn how to extract key objects from image queries using Amazon Rekognition and build a reverse image search engine using Amazon Titan Multimodal Embeddings from Amazon Bedrock in combination with Amazon OpenSearch Serverless Service.
Fine-tune Meta Llama 3.2 text generation models for generative AI inference using Amazon SageMaker JumpStart
In this post, we demonstrate how to fine-tune Meta’s latest Llama 3.2 text generation models, Llama 3.2 1B and 3B, using Amazon SageMaker JumpStart for domain-specific applications. By using the pre-built solutions available in SageMaker JumpStart and the customizable Meta Llama 3.2 models, you can unlock the models’ enhanced reasoning, code generation, and instruction-following capabilities to tailor them for your unique use cases.
How Zalando optimized large-scale inference and streamlined ML operations on Amazon SageMaker
This post is cowritten with Mones Raslan, Ravi Sharma and Adele Gouttes from Zalando. Zalando SE is one of Europe’s largest ecommerce fashion retailers with around 50 million active customers. Zalando faces the challenge of regular (weekly or daily) discount steering for more than 1 million products, also referred to as markdown pricing. Markdown pricing is […]
Accelerate custom labeling workflows in Amazon SageMaker Ground Truth without using AWS Lambda
Amazon SageMaker Ground Truth enables the creation of high-quality, large-scale training datasets, essential for fine-tuning across a wide range of applications, including large language models (LLMs) and generative AI. By integrating human annotators with machine learning, SageMaker Ground Truth significantly reduces the cost and time required for data labeling. Whether it’s annotating images, videos, or […]
Create and fine-tune sentence transformers for enhanced classification accuracy
In this post, we showcase how to fine-tune a sentence transformer specifically for classifying an Amazon product into its product category (such as toys or sporting goods). We showcase two different sentence transformers, paraphrase-MiniLM-L6-v2 and a proprietary Amazon large language model (LLM) called M5_ASIN_SMALL_V2.0, and compare their results.
Governing the ML lifecycle at scale: Centralized observability with Amazon SageMaker and Amazon CloudWatch
This post is part of an ongoing series on governing the machine learning (ML) lifecycle at scale. To start from the beginning, refer to Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker. A multi-account strategy is essential not only for improving governance but also for enhancing […]
Import data from Google Cloud Platform BigQuery for no-code machine learning with Amazon SageMaker Canvas
This post presents an architectural approach to extract data from different cloud environments, such as Google Cloud Platform (GCP) BigQuery, without the need for data movement. This minimizes the complexity and overhead associated with moving data between cloud environments, enabling organizations to access and utilize their disparate data assets for ML projects. We highlight the process of using Amazon Athena Federated Query to extract data from GCP BigQuery, using Amazon SageMaker Data Wrangler to perform data preparation, and then using the prepared data to build ML models within Amazon SageMaker Canvas, a no-code ML interface.
Customized model monitoring for near real-time batch inference with Amazon SageMaker
In this post, we present a framework to customize the use of Amazon SageMaker Model Monitor for handling multi-payload inference requests for near real-time inference scenarios. SageMaker Model Monitor monitors the quality of SageMaker ML models in production. Early and proactive detection of deviations in model quality enables you to take corrective actions, such as retraining models, auditing upstream systems, or fixing quality issues without having to monitor models manually or build additional tooling.