AWS Machine Learning Blog
Category: Amazon SageMaker Studio
Bring your own AI using Amazon SageMaker with Salesforce Data Cloud
This post is co-authored by Daryl Martis, Director of Product, Salesforce Einstein AI. We’re excited to announce Amazon SageMaker and Salesforce Data Cloud integration. With this capability, businesses can access their Salesforce data securely with a zero-copy approach using SageMaker and use SageMaker tools to build, train, and deploy AI models. The inference endpoints are […]
Build a personalized avatar with generative AI using Amazon SageMaker
Generative AI has become a common tool for enhancing and accelerating the creative process across various industries, including entertainment, advertising, and graphic design. It enables more personalized experiences for audiences and improves the overall quality of the final products. One significant benefit of generative AI is creating unique and personalized experiences for users. For example, […]
SageMaker Distribution is now available on Amazon SageMaker Studio
SageMaker Distribution is a pre-built Docker image containing many popular packages for machine learning (ML), data science, and data visualization. This includes deep learning frameworks like PyTorch, TensorFlow, and Keras; popular Python packages like NumPy, scikit-learn, and pandas; and IDEs like JupyterLab. In addition to this, SageMaker Distribution supports conda, micromamba, and pip as Python […]
Build protein folding workflows to accelerate drug discovery on Amazon SageMaker
Drug development is a complex and long process that involves screening thousands of drug candidates and using computational or experimental methods to evaluate leads. According to McKinsey, a single drug can take 10 years and cost an average of $2.6 billion to go through disease target identification, drug screening, drug-target validation, and eventual commercial launch. […]
Use Stable Diffusion XL with Amazon SageMaker JumpStart in Amazon SageMaker Studio
Today we are excited to announce that Stable Diffusion XL 1.0 (SDXL 1.0) is available for customers through Amazon SageMaker JumpStart. SDXL 1.0 is the latest image generation model from Stability AI. SDXL 1.0 enhancements include native 1024-pixel image generation at a variety of aspect ratios. It’s designed for professional use, and calibrated for high-resolution […]
Configure cross-account access of Amazon Redshift clusters in Amazon SageMaker Studio using VPC peering
With cloud computing, as compute power and data became more available, machine learning (ML) is now making an impact across every industry and is a core part of every business and industry. Amazon SageMaker Studio is the first fully integrated ML development environment (IDE) with a web-based visual interface. You can perform all ML development […]
Access private repos using the @remote decorator for Amazon SageMaker training workloads
As more and more customers are looking to put machine learning (ML) workloads in production, there is a large push in organizations to shorten the development lifecycle of ML code. Many organizations prefer writing their ML code in a production-ready style in the form of Python methods and classes as opposed to an exploratory style […]
Organize machine learning development using shared spaces in SageMaker Studio for real-time collaboration
Amazon SageMaker Studio is the first fully integrated development environment (IDE) for machine learning (ML). It provides a single, web-based visual interface where you can perform all ML development steps, including preparing data and building, training, and deploying models. Within an Amazon SageMaker Domain, users can provision a personal Amazon SageMaker Studio IDE application, which […]
Operationalize your Amazon SageMaker Studio notebooks as scheduled notebook jobs
Amazon SageMaker Studio provides a fully managed solution for data scientists to interactively build, train, and deploy machine learning (ML) models. In addition to the interactive ML experience, data workers also seek solutions to run notebooks as ephemeral jobs without the need to refactor code as Python modules or learn DevOps tools and best practices […]
Set up enterprise-level cost allocation for ML environments and workloads using resource tagging in Amazon SageMaker
As businesses and IT leaders look to accelerate the adoption of machine learning (ML), there is a growing need to understand spend and cost allocation for your ML environment to meet enterprise requirements. Without proper cost management and governance, your ML spend may lead to surprises in your monthly AWS bill. Amazon SageMaker is a […]