AWS Machine Learning Blog

Category: Amazon SageMaker Studio

Scale ML workflows with Amazon SageMaker Studio and Amazon SageMaker HyperPod

The integration of Amazon SageMaker Studio and Amazon SageMaker HyperPod offers a streamlined solution that provides data scientists and ML engineers with a comprehensive environment that supports the entire ML lifecycle, from development to deployment at scale. In this post, we walk you through the process of scaling your ML workloads using SageMaker Studio and SageMaker HyperPod.

Introducing Fast Model Loader in SageMaker Inference: Accelerate autoscaling for your Large Language Models (LLMs) – Part 2

In this post, we provide a detailed, hands-on guide to implementing Fast Model Loader in your LLM deployments. We explore two approaches: using the SageMaker Python SDK for programmatic implementation, and using the Amazon SageMaker Studio UI for a more visual, interactive experience. Whether you’re a developer who prefers working with code or someone who favors a graphical interface, you’ll learn how to take advantage of this powerful feature to accelerate your LLM deployments.

Apply Amazon SageMaker Studio lifecycle configurations using AWS CDK

This post serves as a step-by-step guide on how to set up lifecycle configurations for your Amazon SageMaker Studio domains. With lifecycle configurations, system administrators can apply automated controls to their SageMaker Studio domains and their users. We cover core concepts of SageMaker Studio and provide code examples of how to apply lifecycle configuration to […]

John Snow Labs Medical LLMs are now available in Amazon SageMaker JumpStart

Today, we are excited to announce that John Snow Labs’ Medical LLM – Small and Medical LLM – Medium large language models (LLMs) are now available on Amazon SageMaker Jumpstart. For medical doctors, this tool provides a rapid understanding of a patient’s medical journey, aiding in timely and informed decision-making from extensive documentation. This summarization capability not only boosts efficiency but also makes sure that no critical details are overlooked, thereby supporting optimal patient care and enhancing healthcare outcomes.

solution__architecture

Governing the ML lifecycle at scale, Part 3: Setting up data governance at scale

This post dives deep into how to set up data governance at scale using Amazon DataZone for the data mesh. The data mesh is a modern approach to data management that decentralizes data ownership and treats data as a product. It enables different business units within an organization to create, share, and govern their own data assets, promoting self-service analytics and reducing the time required to convert data experiments into production-ready applications.

Customize small language models on AWS with automotive terminology

In this post, we guide you through the phases of customizing SLMs on AWS, with a specific focus on automotive terminology for diagnostics as a Q&A task. We begin with the data analysis phase and progress through the end-to-end process, covering fine-tuning, deployment, and evaluation. We compare a customized SLM with a general purpose LLM, using various metrics to assess vocabulary richness and overall accuracy.

Build a reverse image search engine with Amazon Titan Multimodal Embeddings in Amazon Bedrock and AWS managed services

In this post, you will learn how to extract key objects from image queries using Amazon Rekognition and build a reverse image search engine using Amazon Titan Multimodal Embeddings from Amazon Bedrock in combination with Amazon OpenSearch Serverless Service.

Use Amazon SageMaker Studio with a custom file system in Amazon EFS

In this post, we explore three scenarios demonstrating the versatility of integrating Amazon EFS with SageMaker Studio. These scenarios highlight how Amazon EFS can provide a scalable, secure, and collaborative data storage solution for data science teams.

How Northpower used computer vision with AWS to automate safety inspection risk assessments

How Northpower used computer vision with AWS to automate safety inspection risk assessments

In this post, we share how Northpower has worked with their technology partner Sculpt to reduce the effort and carbon required to identify and remediate public safety risks. Specifically, we cover the computer vision and artificial intelligence (AI) techniques used to combine datasets into a list of prioritized tasks for field teams to investigate and mitigate.