AWS Machine Learning Blog

Category: Artificial Intelligence

How Twilio used Amazon SageMaker MLOps pipelines with PrestoDB to enable frequent model retraining and optimized batch transform

This post is co-written with Shamik Ray, Srivyshnav K S, Jagmohan Dhiman and Soumya Kundu from Twilio. Today’s leading companies trust Twilio’s Customer Engagement Platform (CEP) to build direct, personalized relationships with their customers everywhere in the world. Twilio enables companies to use communications and data to add intelligence and security to every step of […]

Accelerate deep learning training and simplify orchestration with AWS Trainium and AWS Batch

In large language model (LLM) training, effective orchestration and compute resource management poses a significant challenge. Automation of resource provisioning, scaling, and workflow management is vital for optimizing resource usage and streamlining complex workflows, thereby achieving efficient deep learning training processes. Simplified orchestration enables researchers and practitioners to focus more on model experimentation, hyperparameter tuning, […]

Scalable intelligent document processing using Amazon Bedrock

In today’s data-driven business landscape, the ability to efficiently extract and process information from a wide range of documents is crucial for informed decision-making and maintaining a competitive edge. However, traditional document processing workflows often involve complex and time-consuming manual tasks, hindering productivity and scalability. In this post, we discuss an approach that uses the […]

Use weather data to improve forecasts with Amazon SageMaker Canvas

Photo by Zbynek Burival on Unsplash Time series forecasting is a specific machine learning (ML) discipline that enables organizations to make informed planning decisions. The main idea is to supply historic data to an ML algorithm that can identify patterns from the past and then use those patterns to estimate likely values about unseen periods […]

Reimagining software development with the Amazon Q Developer Agent

Amazon Q Developer uses generative artificial intelligence (AI) to deliver state-of-the-art accuracy for all developers, taking first place on the leaderboard for SWE-bench, a dataset that tests a system’s ability to automatically resolve GitHub issues. This post describes how to get started with the software development agent, gives an overview of how the agent works, and discusses its performance on public benchmarks. We also delve into the process of getting started with the Amazon Q Developer Agent and give an overview of the underlying mechanisms that make it a state-of-the-art feature development agent.

Get started quickly with AWS Trainium and AWS Inferentia using AWS Neuron DLAMI and AWS Neuron DLC

Starting with the AWS Neuron 2.18 release, you can now launch Neuron DLAMIs (AWS Deep Learning AMIs) and Neuron DLCs (AWS Deep Learning Containers) with the latest released Neuron packages on the same day as the Neuron SDK release. When a Neuron SDK is released, you’ll now be notified of the support for Neuron DLAMIs […]

Attack path

How Wiz is empowering organizations to remediate security risks faster with Amazon Bedrock

Wiz is a cloud security platform that enables organizations to secure everything they build and run in the cloud by rapidly identifying and removing critical risks. Over 40% of the Fortune 100 trust Wiz’s purpose-built cloud security platform to gain full-stack visibility, accurate risk prioritization, and enhanced business agility. Organizations can connect Wiz in minutes […]

Code generation using Code Llama 70B and Mixtral 8x7B on Amazon SageMaker

In the ever-evolving landscape of machine learning and artificial intelligence (AI), large language models (LLMs) have emerged as powerful tools for a wide range of natural language processing (NLP) tasks, including code generation. Among these cutting-edge models, Code Llama 70B stands out as a true heavyweight, boasting an impressive 70 billion parameters. Developed by Meta […]

Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart

Today, we are excited to announce that the Jina Embeddings v2 model, developed by Jina AI, is available for customers through Amazon SageMaker JumpStart to deploy with one click for running model inference. This state-of-the-art model supports an impressive 8,192-tokens context length. You can deploy this model with SageMaker JumpStart, a machine learning (ML) hub […]