AWS Machine Learning Blog
Category: Artificial Intelligence
Scaling Thomson Reuters’ language model research with Amazon SageMaker HyperPod
In this post, we explore the journey that Thomson Reuters took to enable cutting-edge research in training domain-adapted large language models (LLMs) using Amazon SageMaker HyperPod, an Amazon Web Services (AWS) feature focused on providing purpose-built infrastructure for distributed training at scale.
Introducing Amazon EKS support in Amazon SageMaker HyperPod
This post is designed for Kubernetes cluster administrators and ML scientists, providing an overview of the key features that SageMaker HyperPod introduces to facilitate large-scale model training on an EKS cluster.
A review of purpose-built accelerators for financial services
In this post, we aim to provide business leaders with a non-technical overview of purpose-built accelerators (PBAs) and their role within the financial services industry (FSI).
Anomaly detection in streaming time series data with online learning using Amazon Managed Service for Apache Flink
In this post, we demonstrate how to build a robust real-time anomaly detection solution for streaming time series data using Amazon Managed Service for Apache Flink and other AWS managed services.
Generative AI-powered technology operations
In this post we describe how AWS generative AI solutions (including Amazon Bedrock, Amazon Q Developer, and Amazon Q Business) can further enhance TechOps productivity, reduce time to resolve issues, enhance customer experience, standardize operating procedures, and augment knowledge bases.
Optimizing MLOps for Sustainability
In this post, we review the guidance for optimizing MLOps for Sustainability on AWS, providing service-specific practices to understand and reduce the environmental impact of these workloads.
Enabling complex generative AI applications with Amazon Bedrock Agents
In this post, we take a closer look at Amazon Bedrock Agents. They empower you to build intelligent and context-aware generative AI applications, streamlining complex workflows and delivering natural, conversational user experiences.
Genomics England uses Amazon SageMaker to predict cancer subtypes and patient survival from multi-modal data
In this post, we detail our collaboration in creating two proof of concept (PoC) exercises around multi-modal machine learning for survival analysis and cancer sub-typing, using genomic (gene expression, mutation and copy number variant data) and imaging (histopathology slides) data. We provide insights on interpretability, robustness, and best practices of architecting complex ML workflows on AWS with Amazon SageMaker. These multi-modal pipelines are being used on the Genomics England cancer cohort to enhance our understanding of cancer biomarkers and biology.
Align Meta Llama 3 to human preferences with DPO, Amazon SageMaker Studio, and Amazon SageMaker Ground Truth
In this post, we show you how to enhance the performance of Meta Llama 3 8B Instruct by fine-tuning it using direct preference optimization (DPO) on data collected with SageMaker Ground Truth.
Exploring data using AI chat at Domo with Amazon Bedrock
In this post, we share how Domo, a cloud-centered data experiences innovator is using Amazon Bedrock to provide a flexible and powerful AI solution.