AWS Machine Learning Blog

Category: Artificial Intelligence

Introducing SageMaker Core: A new object-oriented Python SDK for Amazon SageMaker

Introducing SageMaker Core: A new object-oriented Python SDK for Amazon SageMaker

In this post, we show how the SageMaker Core SDK simplifies the developer experience while providing API for seamlessly executing various steps in a general ML lifecycle. We also discuss the main benefits of using this SDK along with sharing relevant resources to learn more about this SDK.

Create a data labeling project with Amazon SageMaker Ground Truth Plus

Amazon SageMaker Ground Truth is a powerful data labeling service offered by AWS that provides a comprehensive and scalable platform for labeling various types of data, including text, images, videos, and 3D point clouds, using a diverse workforce of human annotators. In addition to traditional custom-tailored deep learning models, SageMaker Ground Truth also supports generative […]

Create a multimodal chatbot tailored to your unique dataset with Amazon Bedrock FMs

Create a multimodal chatbot tailored to your unique dataset with Amazon Bedrock FMs

In this post, we show how to create a multimodal chat assistant on Amazon Web Services (AWS) using Amazon Bedrock models, where users can submit images and questions, and text responses will be sourced from a closed set of proprietary documents.

Design secure generative AI application workflows with Amazon Verified Permissions and Amazon Bedrock Agents

In this post, we demonstrate how to design fine-grained access controls using Verified Permissions for a generative AI application that uses Amazon Bedrock Agents to answer questions about insurance claims that exist in a claims review system using textual prompts as inputs and outputs.

Boost productivity by using AI in cloud operational health management

Boost productivity by using AI in cloud operational health management

In this post, we show you how to create an AI-powered, event-driven operations assistant that automatically responds to operational events. The assistant can filter out irrelevant events (based on your organization’s policies), recommend actions, create and manage issue tickets in integrated IT service management (ITSM) tools to track actions, and query knowledge bases for insights related to operational events.

Improve LLM application robustness with Amazon Bedrock Guardrails and Amazon Bedrock Agents

In this post, we demonstrate how Amazon Bedrock Guardrails can improve the robustness of the agent framework. We are able to stop our chatbot from responding to non-relevant queries and protect personal information from our customers, ultimately improving the robustness of our agentic implementation with Amazon Bedrock Agents.

Enable or disable ACL crawling safely in Amazon Q Business

Amazon Q Business recently added support for administrators to modify the default access control list (ACL) crawling feature for data source connectors. Amazon Q Business is a fully managed, AI powered assistant with enterprise-grade security and privacy features. It includes over 40 data source connectors that crawl and index documents. By default, Amazon Q Business […]

SK Telecom improves telco-specific Q&A by fine-tuning Anthropic’s Claude models in Amazon Bedrock

SK Telecom improves telco-specific Q&A by fine-tuning Anthropic’s Claude models in Amazon Bedrock

In this post, we share how SKT customizes Anthropic Claude models for telco-specific Q&A regarding technical telecommunication documents of SKT using Amazon Bedrock.