AWS Machine Learning Blog

Category: Amazon Machine Learning

Improve LLM application robustness with Amazon Bedrock Guardrails and Amazon Bedrock Agents

In this post, we demonstrate how Amazon Bedrock Guardrails can improve the robustness of the agent framework. We are able to stop our chatbot from responding to non-relevant queries and protect personal information from our customers, ultimately improving the robustness of our agentic implementation with Amazon Bedrock Agents.

SK Telecom improves telco-specific Q&A by fine-tuning Anthropic’s Claude models in Amazon Bedrock

SK Telecom improves telco-specific Q&A by fine-tuning Anthropic’s Claude models in Amazon Bedrock

In this post, we share how SKT customizes Anthropic Claude models for telco-specific Q&A regarding technical telecommunication documents of SKT using Amazon Bedrock.

Architecture diagram

Automate user on-boarding for financial services with a digital assistant powered by Amazon Bedrock

In this post, we present a solution that harnesses the power of generative AI to streamline the user onboarding process for financial services through a digital assistant.

Create your fashion assistant application using Amazon Titan models and Amazon Bedrock Agents

Create your fashion assistant application using Amazon Titan models and Amazon Bedrock Agents

In this post, we implement a fashion assistant agent using Amazon Bedrock Agents and the Amazon Titan family models. The fashion assistant provides a personalized, multimodal conversational experience.

How Aviva built a scalable, secure, and reliable MLOps platform using Amazon SageMaker

How Aviva built a scalable, secure, and reliable MLOps platform using Amazon SageMaker

In this post, we describe how Aviva built a fully serverless MLOps platform based on the AWS Enterprise MLOps Framework and Amazon SageMaker to integrate DevOps best practices into the ML lifecycle. This solution establishes MLOps practices to standardize model development, streamline ML model deployment, and provide consistent monitoring.

Implement model-independent safety measures with Amazon Bedrock Guardrails

Implement model-independent safety measures with Amazon Bedrock Guardrails

In this post, we discuss how you can use the ApplyGuardrail API in common generative AI architectures such as third-party or self-hosted large language models (LLMs), or in a self-managed Retrieval Augmented Generation (RAG) architecture.

How Schneider Electric uses Amazon Bedrock to identify high-potential business opportunities

How Schneider Electric uses Amazon Bedrock to identify high-potential business opportunities

In this post, we show how the team at Schneider collaborated with the AWS Generative AI Innovation Center (GenAIIC) to build a generative AI solution on Amazon Bedrock to solve this problem. The solution processes and evaluates each requests for proposal (RFP) and then routes high-value RFPs to the microgrid subject matter expert (SME) for approval and recommendation.