AWS Machine Learning Blog
Category: Amazon Machine Learning
Integrate dynamic web content in your generative AI application using a web search API and Amazon Bedrock Agents
In this post, we demonstrate how to use Amazon Bedrock Agents with a web search API to integrate dynamic web content in your generative AI application.
Integrate Amazon Bedrock Knowledge Bases with Microsoft SharePoint as a data source
In this post, we show you how to configure Amazon Bedrock Knowledge Bases with SharePoint Online as a data source. By connecting SharePoint Online as a data source, employees can interact with the organization’s knowledge and data stored in SharePoint using natural language, making it straightforward to find relevant information, extract key points, and derive valuable insights.
Revolutionize logo design creation with Amazon Bedrock: Embracing generative art, dynamic logos, and AI collaboration
In this post, we walk through how AWS can help accelerate a brand’s creative efforts with access to a powerful image-to-image model from Stable Diffusion available on Amazon Bedrock to interactively create and edit art and logo images.
Reinvent personalization with generative AI on Amazon Bedrock using task decomposition for agentic workflows
In this post, we present an automated solution to provide a consistent and responsible personalization experience for your customers by using smaller LLMs for website personalization tailored to businesses and industries. This decomposes the complex task into subtasks handled by task / domain adopted LLMs, adhering to company guidelines and human expertise.
Building an efficient MLOps platform with OSS tools on Amazon ECS with AWS Fargate
In this post, we show you how Zeta Global, a data-driven marketing technology company, has built an efficient MLOps platform to streamline the end-to-end ML workflow, from data ingestion to model deployment, while optimizing resource utilization and cost efficiency.
Build RAG-based generative AI applications in AWS using Amazon FSx for NetApp ONTAP with Amazon Bedrock
In this post, we demonstrate a solution using Amazon FSx for NetApp ONTAP with Amazon Bedrock to provide a RAG experience for your generative AI applications on AWS by bringing company-specific, unstructured user file data to Amazon Bedrock in a straightforward, fast, and secure way.
Improve RAG performance using Cohere Rerank
In this post, we show you how to use Cohere Rerank to improve search efficiency and accuracy in Retrieval Augmented Generation (RAG) systems.
Unlock AWS Cost and Usage insights with generative AI powered by Amazon Bedrock
In this post, we explore a solution that uses generative artificial intelligence (AI) to generate a SQL query from a user’s question in natural language. This solution can simplify the process of querying CUR data stored in an Amazon Athena database using SQL query generation, running the query on Athena, and representing it on a web portal for ease of understanding.
Streamline workflow orchestration of a system of enterprise APIs using chaining with Amazon Bedrock Agents
In this post, we explore how chaining domain-specific agents using Amazon Bedrock Agents can transform a system of complex API interactions into streamlined, adaptive workflows, empowering your business to operate with agility and precision.
Build a RAG-based QnA application using Llama3 models from SageMaker JumpStart
In this post, we provide a step-by-step guide for creating an enterprise ready RAG application such as a question answering bot. We use the Llama3-8B FM for text generation and the BGE Large EN v1.5 text embedding model for generating embeddings from Amazon SageMaker JumpStart.