AWS Machine Learning Blog
Category: Amazon Bedrock
Build generative AI applications on Amazon Bedrock with the AWS SDK for Python (Boto3)
In this post, we demonstrate how to use Amazon Bedrock with the AWS SDK for Python (Boto3) to programmatically incorporate FMs. We explore invoking a specific FM and processing the generated text, showcasing the potential for developers to use these models in their applications for a variety of use cases
Improve factual consistency with LLM Debates
In this post, we demonstrate the potential of large language model (LLM) debates using a supervised dataset with ground truth. In this post, we navigate the LLM debating technique with persuasive LLMs having two expert debater LLMs (Anthropic Claude 3 Sonnet and Mixtral 8X7B) and one judge LLM (Mistral 7B v2 to measure, compare, and contrast its performance against other techniques like self-consistency (with naive and expert judges) and LLM consultancy.
Amazon Bedrock Flows is now generally available with enhanced safety and traceability
Today, we are excited to announce the general availability of Amazon Bedrock Flows (previously known as Prompt Flows). With Bedrock Flows, you can quickly build and execute complex generative AI workflows without writing code. Bedrock Flows makes it easier for developers and businesses to harness the power of generative AI, enabling you to create more sophisticated and efficient AI-driven solutions for your customers.
Enhance speech synthesis and video generation models with RLHF using audio and video segmentation in Amazon SageMaker
In this post, we show you how to implement an audio and video segmentation solution using SageMaker Ground Truth. We guide you through deploying the necessary infrastructure using AWS CloudFormation, creating an internal labeling workforce, and setting up your first labeling job. By the end of this post, you will have a fully functional audio/video segmentation workflow that you can adapt for various use cases, from training speech synthesis models to improving video generation capabilities.
Using responsible AI principles with Amazon Bedrock Batch Inference
In this post, we explore a practical, cost-effective approach for incorporating responsible AI guardrails into Amazon Bedrock Batch Inference workflows. Although we use a call center’s transcript summarization as our primary example, the methods we discuss are broadly applicable to a variety of batch inference use cases where responsible considerations and data protection are a top priority.
Revolutionizing knowledge management: VW’s AI prototype journey with AWS
we’re excited to share the journey of the VW—an innovator in the automotive industry and Europe’s largest car maker—to enhance knowledge management by using generative AI, Amazon Bedrock, and Amazon Kendra to devise a solution based on Retrieval Augmented Generation (RAG) that makes internal information more easily accessible by its users. This solution efficiently handles documents that include both text and images, significantly enhancing VW’s knowledge management capabilities within their production domain.
Automate Q&A email responses with Amazon Bedrock Knowledge Bases
In this post, we illustrate automating the responses to email inquiries by using Amazon Bedrock Knowledge Bases and Amazon Simple Email Service (Amazon SES), both fully managed services. By linking user queries to relevant company domain information, Amazon Bedrock Knowledge Bases offers personalized responses.
Streamline RAG applications with intelligent metadata filtering using Amazon Bedrock
In this post, we explore an innovative approach that uses LLMs on Amazon Bedrock to intelligently extract metadata filters from natural language queries. By combining the capabilities of LLM function calling and Pydantic data models, you can dynamically extract metadata from user queries. This approach can also enhance the quality of retrieved information and responses generated by the RAG applications.
Customize small language models on AWS with automotive terminology
In this post, we guide you through the phases of customizing SLMs on AWS, with a specific focus on automotive terminology for diagnostics as a Q&A task. We begin with the data analysis phase and progress through the end-to-end process, covering fine-tuning, deployment, and evaluation. We compare a customized SLM with a general purpose LLM, using various metrics to assess vocabulary richness and overall accuracy.
Automate emails for task management using Amazon Bedrock Agents, Amazon Bedrock Knowledge Bases, and Amazon Bedrock Guardrails
In this post, we demonstrate how to create an automated email response solution using Amazon Bedrock and its features, including Amazon Bedrock Agents, Amazon Bedrock Knowledge Bases, and Amazon Bedrock Guardrails.