AWS HPC Blog
Category: Compute
Minimize HPC compute costs with all-or-nothing instance launching
In this post, we highlight a little-known configuration option for Slurm on @awscloud ParallelCluster that can reduce costs and increase your iteration speed by preventing idle batch instances from launching when EC2 capacity is limited.
BioContainers are now available in Amazon ECR Public Gallery
Today we are excited to announce that all 9000+ applications provided by the BioContainers community are available within ECR Public Gallery! You don’t need an AWS account to access these images, but having one allows many more pulls to the internet, and unmetered usage within AWS. If you perform any sort of bioinformatics analysis on AWS, you should check it out!
Optimize Protein Folding Costs with OpenFold on AWS Batch
In this post, we describe how to orchestrate protein folding jobs on AWS Batch. We also compare the performance of OpenFold and AlphaFold on a set of public targets. Finally, we will discuss how to optimize your protein folding costs.
Rearchitecting AWS Batch managed services to leverage AWS Fargate
AWS service teams continuously improve the underlying infrastructure and operations of managed services, and AWS Batch is no exception. The AWS Batch team recently moved most of their job scheduler fleet to a serverless infrastructure model leveraging AWS Fargate. I had a chance to sit with Devendra Chavan, Senior Software Development Engineer on the AWS Batch team, to discuss the move to AWS Fargate and its impact on the Batch managed scheduler service component.
Easing your migration from SGE to Slurm in AWS ParallelCluster 3
This post will help you understand the tools available to ease the stress of migrating your cluster (and your users) from SGE to Slurm, which is necessary since the HPC community is no longer supporting SGE’s open-source codebase.
Simulating 44-Qubit quantum circuits using AWS ParallelCluster
A key part of the development of quantum hardware and quantum algorithms is simulation using existing classical architectures and HPC techniques. In this blog post, we describe how to perform large-scale quantum circuits simulations using AWS ParallelCluster with QuEST, the Quantum Exact Simulation Toolkit. We demonstrate a simple and rapid deployment of computational resources up to 4,096 compute instances to simulate random quantum circuits with up to 44 qubits. We were able to allocate as many as 4096 EC2 instances of c5.18xlarge to simulate a non-trivial 44 qubit quantum circuit in fewer than 3.5 hours.
Running large-scale CFD fire simulations on AWS for Amazon.com
In this blog post, we discuss the AWS solution that Amazon’s construction division used to conduct large-scale CFD fire simulations as part of their Fire Strategy solutions to demonstrate safety and fire mitigation strategies. We outline the five key steps taken that resulted in simulation times that were 15-20x faster than previous on-premises architectures, reducing the time to complete from up to twenty-one days to less than one day.
Expanded filesystems support in AWS ParallelCluster 3.2
AWS ParallelCluster version 3.2 introduces support for two new Amazon FSx filesystem types (NetApp ONTAP and OpenZFS). It also lifts the limit on the number of filesystem mounts you can have on your cluster. We’ll show you how, and help you with the details for getting this going right away.
Slurm-based memory-aware scheduling in AWS ParallelCluster 3.2
AWS ParallelCluster version 3.2 now supports memory-aware scheduling in Slurm to give you control over the placement of jobs with specific memory requirements. In this blog post, we’ll show you how it works, and explain why this will be really useful to people with memory-hungry workloads.
Analyzing Genomic Data using Amazon Genomics CLI and Amazon SageMaker
In this blog post, we demonstrate how to leverage the AWS Genomics Command line and Amazon SageMaker to analyze large-scale exome sequences and derive meaningful insights. We use the bioinformatics workflow manager Nextflow, it’s open source library of pipelines, NF-Core, and AWS Batch.