亚马逊AWS官方博客

Tag: Redshift

使用Amazon Redshift ML构建机器学习应用

自从2018年起,亚马逊云科技发布了一系列的产品和服务,例如Amazon SageMaker,Amazon Aurora ML,Amazon Redshift ML,和2021年reInvent发布的Amazon SageMaker Canvas,使得不同角色的工程师越来越容易构建机器学习应用,降低应用机器学习的门槛,以实现普惠机器学习。本系列文章将以上述产品为核心,从不同的角度帮助企业中不同部门的人员构建机器学习应用。

使用Amazon Web Services CDK,在云上构建DataOPS 平台

这是系列文章的第二篇,在第一篇文章“另辟蹊径: 在云端使用SQL语言实现数据转化,测试和文档维护” 中介绍了做数据准备的ELT模式,以及如何利用DBT来帮助Data Analysts通过SQL做数据转化,测试和文档维护。 在这篇文章中,将以上一篇为基础,使用Amazon Web Services CDK构建一个Data OPS方案。

对症下药 – Redshift 调优方法漫谈

所谓流水不腐户枢不蠹,任何一款数据库即使有完善的初始设计,随着数据量的增长变化,依然需要DBA的精心维护调优,才能保证数据库以最佳状态为客户提供服务。Amazon Redshift也是如此,本文将着重向读者介绍如何定位性能问题以及性能调优的最佳实践。

善始方能善终- Amazon Redshift 表设计探秘

Amazon Redshift的表设计与OLTP的表设计有很大区别,Amazon Redshift需要面对海量数据集和极其复杂的分析查询,如果设计不当,大规模并行处理就会受到数据分配不均和数据移动的影响,从而大大影响性能,本文希望能为读者理清Amazon Redshift表设计的一些基本原则,分享一些最佳实践,让读者能最大限度地发挥Amazon Redshift的潜力。