亚马逊AWS官方博客
Tag: Amazon Athena
使用 Amazon Athena 查询 OpenStreetMap
这是 2017 年 OpenStreetMap 美国理事会成员 Seth Fitzsimmons 的一篇特邀博文。Seth 为 Humanitarian OpenStreetMap Team、Mapzen、美国红十字会以及世界银行等客户设计创新的地理空间解决方案。
OpenStreetMap (OSM) 式一个免费的可编辑世界地图,由志愿者创建和维护,可依据开放许可证使用。Mapbox、Foursquare、Mapzen、世界银行、美国红十字会以及其他公司和非营利组织使用 OSM 为全世界的用户提供地图、方向指引和地理背景。
使用 AWS Glue 提取 Salesforce.com 中的数据并使用 Amazon Athena 进行分析
在本文中,我将向您展示如何使用 AWS Glue 提取您 Salesforce.com 账户里的数据,并将其保存到 Amazon S3。然后,将来自 Salesforce.com 的账户数据与来自单独的订单管理系统的订单数据结合起来,并使用 Amazon Athena 来生成报告。
使用 AWS Glue 和 Amazon S3 构建数据湖基础
数据湖是一种越来越受欢迎的数据存储和分析方法,可解决处理海量异构数据的难题。数据湖可让组织将所有结构化和非结构化数据存储在一个集中式存储库中。由于数据可以按原样存储,因此无需将其转换为预先定义的数据结构(区别于传统关系型数据仓库)。
使用 Athena 替换 Hbase 实现对历史数据的查询分析
Amazon Athena服务近期将在中国区发布。Amaozn Athena在大数据平台的交互式查询中应用非常广泛。之前由于中国区没有发布Amazon Athena服务,有些用户为了实现历史数据的查询,选择使用Apache HBase服务,这除了给用户造成管理和成本的负担之外,也对HBase集群的性能带来大幅的降低。本文通过一个示例介绍如何一步一步的从HBase中剥离历史数据实现使用Amazon Athena进行交互式查询的方案。
使用 Amazon QuickSight ML Insights 检测欺诈性呼叫
欺诈者不断寻找新的技术和设计新的伎俩。这改变了欺诈方式使检测变得困难。企业通常使用基于规则的欺诈检测系统来应对。然而,一旦欺诈者意识到他们当前的伎俩或工具被识别出,他们很快就会找到破解方法。此外,在面临大量数据时,基于规则的检测系统往往会因为大量的数据显得吃力并且速度会下降。这使得难以检测欺诈行为并迅速采取行动,从而导致收入损失。
使用 Amazon Athena 分析 S3 中的数据
在本博文中,我们演示了如何使用 Athena 来处理来自 Elastic Load Balancer 的日志(预先定义好的文本格式)。我们将演示如何创建表,按照 Athena 使用的格式将数据分区,然后转换为 Parquet 并比较查询性能。
利用 Amazon S3 inventory, Amazon EMR, 和 Amazon Athena 来触发针对预先存在的对象的跨区域复制
在本文中,我们展示了如何用Amazon S3 inventory, Amazon Athena, AWS Glue Data Catalog和Amazon EMR来对预先存在的和之前复制失败的对象进行规模化的copy-in-place。