亚马逊AWS官方博客
Category: Generative AI
利用亚马逊云科技的 AI 和媒体服务快速合成多语言视频
本文介绍使用 Amazon Transcribe,Amazon Translate,Amazon Polly,AWS Elemental MediaConvert 等服务快速合成多语言的视频。
使用 Amazon Kendra、LangChain 和大型语言模型根据企业数据快速构建高精度的生成式人工智能应用程序
在这篇文章中,我们将演示如何通过将 Amazon Kendra 的功能与 LLM 相结合来实现 RAG 工作流,从而创建最先进的 GenAI 应用程序来提供有关企业内容的对话体验。
技术领导者如何为生成式 AI 做好准备
作为企业信息部门、技术部门、以及数据部门的领导者,面对生成式 AI,你应该思考些什么?你能做些什么准备?本文说明了几个比较主要的方向。
使用 QLoRA 在 Amazon SageMaker Studio notebook 上对 Falcon-40B 和其他 LLM 进行交互式微调
在这篇文章中,我们展示了如何使用 Hugging Face PEFT 和 bitsandbtyes 在 SageMaker Studio notebook 上通过 QLoRA 微调 Falcon-40B 模型。
使用 Amazon SageMaker、Amazon OpenSearch Service、Streamlit 和 LangChain 构建功能强大的问答机器人
在这篇博文中,我们展示了如何结合使用 AWS 服务、开源 LLM 和开源 Python 软件包,来创建企业级 RAG 解决方案。
生成式 AI 对企业来说意味着什么?
尽管生成式 AI 是一项十分让人兴奋的新技术,最重要还是看你如何将这项技术和你现有的技术、员工技能、价值观、竞争力、愿景相结合。
在 Amazon SageMaker 上使用 OpenChatkit 模型构建自定义聊天机器人应用程序
在这篇文章中,我们将展示如何使用 DJL Serving 以及 DeepSpeed 和 Hugging Face Accelerate 等开源模型并行库,在 Amazon SageMaker 上部署 OpenChatKit 模型(GPT-NeXT-Chat-Base-20B 和 GPT-JT-Moderation-6B 模型)。
通过 Amazon SageMaker JumpStart 在基础模型中使用检索式增强生成实现问答
在这篇文章中,我们将说明 RAG 及其优势,并演示如何快速使用示例 notebook,通过 Jumpstart 在 LLM 中使用 RAG 实现来解决问答任务。
预览版 – 使用 Amazon Bedrock 代理将基础模型连接到公司的数据源
我们在 7 月宣布推出 Amazon Bedrock 代理的预览版,这是让开发人员能够创建生成式 AI 应用程 […]
在 Amazon SageMaker 上使用 AWS Inferentia2 和 AWS Trainium 以最低成本实现高性能的生成式人工智能推理
随着能够创建类人文本、图像、代码和音频的生成式人工智能模型的兴起,人工智能(AI)和机器学习(ML)的世界见证 […]