亚马逊AWS官方博客
为您的聊天机器人部署 Web UI
我们的示范 Amazon Lex Web UI 被称为聊天机器人 UI,已经完成了与搭建全功能的 Amazon Lex 聊天机器人网络客户端有关的绝大部分工作。您可以快速利用这些功能,减少聊天机器人所支持应用程序的价值变现时间。
限制门槛已解除 – EC2 实例的网络带宽增加
我希望您已配置 AMI,并且您的最新一代 EC2 实例已使用 Elastic Network Adapter (ENA),也就是 2016 年年中我介绍过的适配器。ENA 可以提高吞吐量并降低延迟,同时还能最大程度减少主机处理器的负载。存在多个 vCPU 并且智能数据包的路由由多个传输和接收队列提供支持时,ENA 运行良好。
如今,我们解除了限制门槛,您可以在所有 AWS 区域使用更多带宽。
AWS DeepLens Lambda 函数与新 Model Optimizer 详解
今天我们推出了面向 AWS DeepLens 的新 Model Optimizer,优化深度学习模型,只需一行 Python 代码即可在 DeepLens GPU 上高效运行。Model Optimizer 已在 AWS DeepLens 软件版本 1.2.0 中提供。
基于 AWS KMS 的加密现已可用于 Amazon SageMaker 中的训练和托管
Amazon SageMaker 使用一次性密钥 (也称为瞬态密钥) 加密所连接的 ML 通用型存储卷,用以训 […]
Amazon SageMaker BlazingText:在多个 CPU 或 GPU 上并行处理 Word2Vec
今天,我们推出了 Amazon SageMaker 的最新内置算法 Amazon SageMaker BlazingText。BlazingText 是一种无监督学习算法,用于生成 Word2Vec 嵌入,即单词在大型语料库中的密集向量表示。我们很高兴构建了 BlazingText,它可以最快的速度实现 Word2Vec,供 Amazon SageMaker 用户在以下实例上使用:
单一 CPU 实例 (Mikolov 和 fastText 的原始 C 实现)
使用多个 GPU、P2 或 P3 的单一实例
多个 CPU 实例 (分布式 CPU 训练)
使用 NNPACK 库加速 Apache MXNet
Apache MXNet 是供开发人员构建、训练和重复使用深度学习网络的开源库。在这篇博文中,我将向您介绍如何使用 NNPACK 库来加速推理。事实上,当 GPU 推理不可用时,要想从实例中获取更多性能,将 NNPACK 添加到 Apache MXNet 中或许不失为一种简单的方法。和往常一样,“您的情况可能会有所不同”,而且您应该始终运行自己的测试。
新功能 – 区域间 VPC 对等连接
今天我要向您介绍的是区域间 VPC 对等连接。早在 2014 年年初,您就已经能够在同一 AWS 区域的 Virtual Private Cloud (VPC) 之间创建对等连接 (请阅读 Amazon Virtual Cloud 的新 VPC 对等连接功能了解更多信息)。建立连接后,对等 VPC 中的 EC2 实例可以使用自己的私有 IP 地址跨对等连接相互通信,就像它们位于同一网络中一样。
AWS Deep Learning AMI 现在推出 TensorFlow 1.5 和全新 Model Serving 功能
AWS Deep Learning AMI 可帮助您快速轻松地开始使用机器学习。AMI 包含大量预建选项,可满足机器学习从业者的各种需求。如果您需要常见深度学习框架的最新版本,Deep Learning AMI 可提供在基于 Conda 的独立虚拟环境中安装的预建 pip 二进制文件。如果您希望测试高级框架功能或者对框架源代码进行微调,包含源代码的 Deep Learning AMI 可提供基于源的自定义框架安装。这些框架通常内建了常见二进制文件中没有的高级优化功能。
Zocdoc 在 AWS 上使用 TensorFlow 帮助患者安心看病
医疗保健行业的情况非常复杂。最近的调查表明,超过一半的美国人不清楚所持保险涵盖的范围,四分之三的人希望通过更简单的方法来确认医生是否在保险公司网络内。
Zocdoc 帮助患者理清了这一混乱局面,让需要医疗保健的个人能够做出更明智的选择,同时找到满足其需求的医疗服务。Zocdoc 致力于优化医疗保健数据来帮助患者,支持其完成该使命的核心就是 AWS 上的深度学习。有了使用 TensorFlow 深度学习框架构建的算法,Zocdoc 可更高效地为患者分配医生。患者可预约 24 小时内看诊,过去全国新患者等待看诊的平均等待时间为 24 天。
ClearView Social 使用 Amazon Comprehend 来衡量社交分享的影响力
使用 ClearView Social,公司员工只需一次点击即可在 LinkedIn、Twitter 和其他社交网络上分享经批准的内容。然后它会在高峰时段将内容广播到这些社交网络,并使用排行榜和分析控制面板来跟踪投放效果。