AWS Big Data Blog
Category: Learning Levels
Introducing Amazon MWAA support for Apache Airflow version 2.9.2
Amazon Managed Workflows for Apache Airflow (Amazon MWAA) is a managed orchestration service for Apache Airflow that significantly improves security and availability, and reduces infrastructure management overhead when setting up and operating end-to-end data pipelines in the cloud. Today, we are announcing the availability of Apache Airflow version 2.9.2 environments on Amazon MWAA. Apache Airflow […]
Run Apache XTable on Amazon MWAA to translate open table formats
In this post, we show you how to get started with Apache XTable on AWS and how you can use it in a batch pipeline orchestrated with Amazon Managed Workflows for Apache Airflow (Amazon MWAA). To understand how XTable and similar solutions work, we start with a high-level background on metadata management in an OTF and then dive deeper into XTable and its usage.
How EchoStar ingests terabytes of data daily across its 5G Open RAN network in near real-time using Amazon Redshift Serverless Streaming Ingestion
EchoStar, a connectivity company providing television entertainment, wireless communications, and award-winning technology to residential and business customers throughout the US, deployed the first standalone, cloud-native Open RAN 5G network on AWS public cloud. This post provides an overview of real-time data analysis with Amazon Redshift and how EchoStar uses it to ingest hundreds of megabytes per second. As data sources and volumes grew across its network, EchoStar migrated from a single Redshift Serverless workgroup to a multi-warehouse architecture with live data sharing.
Amazon MWAA best practices for managing Python dependencies
Customers with data engineers and data scientists are using Amazon Managed Workflows for Apache Airflow (Amazon MWAA) as a central orchestration platform for running data pipelines and machine learning (ML) workloads. To support these pipelines, they often require additional Python packages, such as Apache Airflow Providers. For example, a pipeline may require the Snowflake provider […]
Amazon DataZone enhances data discovery with advanced search filtering
Amazon DataZone, a fully managed data management service, helps organizations catalog, discover, analyze, share, and govern data between data producers and consumers. We are excited to announce the introduction of advanced search filtering capabilities in the Amazon DataZone business data catalog. With the improved rendering of glossary terms, you can now navigate large sets of […]
Implement disaster recovery with Amazon Redshift
Amazon Redshift is a fully managed, petabyte-scale data warehouse service in the cloud. You can start with just a few hundred gigabytes of data and scale to a petabyte or more. This enables you to use your data to acquire new insights for your business and customers. The objective of a disaster recovery plan is […]
Build a real-time streaming generative AI application using Amazon Bedrock, Amazon Managed Service for Apache Flink, and Amazon Kinesis Data Streams
Data streaming enables generative AI to take advantage of real-time data and provide businesses with rapid insights. This post looks at how to integrate generative AI capabilities when implementing a streaming architecture on AWS using managed services such as Managed Service for Apache Flink and Amazon Kinesis Data Streams for processing streaming data and Amazon Bedrock to utilize generative AI capabilities. We include a reference architecture and a step-by-step guide on infrastructure setup and sample code for implementing the solution with the AWS Cloud Development Kit (AWS CDK). You can find the code to try it out yourself on the GitHub repo.
Access Amazon Redshift data from Salesforce Data Cloud with Zero Copy Data Federation
This post is co-authored by Vijay Gopalakrishnan, Director of Product, Salesforce Data Cloud. In today’s data-driven business landscape, organizations collect a wealth of data across various touch points and unify it in a central data warehouse or a data lake to deliver business insights. This data is primarily used for analytical and machine learning purposes, […]
Run Apache Spark 3.5.1 workloads 4.5 times faster with Amazon EMR runtime for Apache Spark
The Amazon EMR runtime for Apache Spark is a performance-optimized runtime that is 100% API compatible with open source Apache Spark. It offers faster out-of-the-box performance than Apache Spark through improved query plans, faster queries, and tuned defaults. Amazon EMR on EC2, Amazon EMR Serverless, Amazon EMR on Amazon EKS, and Amazon EMR on AWS […]
Stream multi-tenant data with Amazon MSK
AWS helps SaaS vendors by providing the building blocks needed to implement a streaming application with Amazon Kinesis Data Streams and Amazon Managed Streaming for Apache Kafka (Amazon MSK), and real-time processing applications with Amazon Managed Service for Apache Flink. In this post, we look at implementation patterns a SaaS vendor can adopt when using a streaming platform as a means of integration between internal components, where streaming data is not directly exposed to third parties. In particular, we focus on Amazon MSK.