AWS Big Data Blog
Category: Learning Levels
Analyze more demanding as well as larger time series workloads with Amazon OpenSearch Serverless
In today’s data-driven landscape, managing and analyzing vast amounts of data, especially logs, is crucial for organizations to derive insights and make informed decisions. However, handling this data efficiently presents a significant challenge, prompting organizations to seek scalable solutions without the complexity of infrastructure management. Amazon OpenSearch Serverless lets you run OpenSearch in the AWS […]
Detect and handle data skew on AWS Glue
October 2024: This post was reviewed and updated for accuracy. AWS Glue is a fully managed, serverless data integration service provided by Amazon Web Services (AWS) that uses Apache Spark as one of its backend processing engines (as of this writing, you can use Python Shell or Spark). Data skew occurs when the data being […]
Dive deep into security management: The Data on EKS Platform
The construction of big data applications based on open source software has become increasingly uncomplicated since the advent of projects like Data on EKS, an open source project from AWS to provide blueprints for building data and machine learning (ML) applications on Amazon Elastic Kubernetes Service (Amazon EKS). In the realm of big data, securing […]
Use your corporate identities for analytics with Amazon EMR and AWS IAM Identity Center
To enable your workforce users for analytics with fine-grained data access controls and audit data access, you might have to create multiple AWS Identity and Access Management (IAM) roles with different data permissions and map the workforce users to one of those roles. Multiple users are often mapped to the same role where they need […]
Optimize data layout by bucketing with Amazon Athena and AWS Glue to accelerate downstream queries
In this post, we discuss how to implement bucketing on AWS data lakes, including using Athena CTAS statement and AWS Glue for Apache Spark. We also cover bucketing for Apache Iceberg tables.
Run interactive workloads on Amazon EMR Serverless from Amazon EMR Studio
Starting from release 6.14, Amazon EMR Studio supports interactive analytics on Amazon EMR Serverless. You can now use EMR Serverless applications as the compute, in addition to Amazon EMR on EC2 clusters and Amazon EMR on EKS virtual clusters, to run JupyterLab notebooks from EMR Studio Workspaces. EMR Studio is an integrated development environment (IDE) […]
Dynamic DAG generation with YAML and DAG Factory in Amazon MWAA
Amazon Managed Workflow for Apache Airflow (Amazon MWAA) is a managed service that allows you to use a familiar Apache Airflow environment with improved scalability, availability, and security to enhance and scale your business workflows without the operational burden of managing the underlying infrastructure. In Airflow, Directed Acyclic Graphs (DAGs) are defined as Python code. […]
Amazon OpenSearch Service Under the Hood : OpenSearch Optimized Instances(OR1)
Amazon OpenSearch Service recently introduced the OpenSearch Optimized Instance family (OR1), which delivers up to 30% price-performance improvement over existing memory optimized instances in internal benchmarks, and uses Amazon Simple Storage Service (Amazon S3) to provide 11 9s of durability. With this new instance family, OpenSearch Service uses OpenSearch innovation and AWS technologies to reimagine […]
Achieve near real time operational analytics using Amazon Aurora PostgreSQL zero-ETL integration with Amazon Redshift
Our zero-ETL integration with Amazon Redshift facilitates point-to-point data movement to get it ready for analytics, artificial intelligence (AI) and machine learning (ML) using Amazon Redshift on petabytes of data. In this post, we provide step-by-step guidance on how to get started with near real time operational analytics using the Amazon Aurora PostgreSQL zero-ETL integration with Amazon Redshift.
Automate large-scale data validation using Amazon EMR and Apache Griffin
Many enterprises are migrating their on-premises data stores to the AWS Cloud. During data migration, a key requirement is to validate all the data that has been moved from source to target. This data validation is a critical step, and if not done correctly, may result in the failure of the entire project. However, developing […]