AWS Big Data Blog

Category: Amazon Redshift

How to migrate a large data warehouse from IBM Netezza to Amazon Redshift with no downtime

In this article, we explain how this customer performed a large-scale data warehouse migration from IBM Netezza to Amazon Redshift without downtime, by following a thoroughly planned migration process, and leveraging AWS Schema Conversion Tool (SCT) and Amazon Redshift best practices.

Bringing your stored procedures to Amazon Redshift

Amazon always works backwards from the customer’s needs. Customers have made strong requests that they want stored procedures in Amazon Redshift, to make it easier to migrate their existing workloads from legacy, on-premises data warehouses.

With that primary goal in mind, AWS chose to implement PL/pqSQL stored procedure to maximize compatibility with existing procedures and simplify migrations. In this post, we discuss how and where to use stored procedures to improve operational efficiency and security. We also explain how to use stored procedures with AWS Schema Conversion Tool.

How 3M Health Information Systems built a healthcare data reporting tool with Amazon Redshift

After reviewing many solutions, 3M HIS chose Amazon Redshift as the appropriate data warehouse solution. We concluded Amazon Redshift met our needs; a fast, fully managed, petabyte-scale data warehouse solution that uses columnar storage to minimize I/O, provides high data compression rates, and offers fast performance. We quickly spun up a cluster in our development environment, built out the dimensional model, loaded data, and made it available to perform benchmarking and testing of the user data. An extract, transform, load (ETL) tool was used to process and load the data from various sources into Amazon Redshift.

Query your Amazon Redshift cluster with the new Query Editor

Data warehousing is a critical component for analyzing and extracting actionable insights from your data. Amazon Redshift is a fast, scalable data warehouse that makes it cost-effective to analyze all of your data across your data warehouse and data lake. The Amazon Redshift console recently launched the Query Editor. The Query Editor is an in-browser […]

How to enable cross-account Amazon Redshift COPY and Redshift Spectrum query for AWS KMS–encrypted data in Amazon S3

This post shows a step-by-step walkthrough of how to set up a cross-account Amazon Redshift COPY and Spectrum query using a sample dataset in Amazon S3. The sample dataset is encrypted at rest using AWS KMS-managed keys (SSE-KMS). About AWS Key Management Service (AWS KMS) With AWS Key Management Service (AWS KMS), you can have […]

Run Amazon payments analytics with 750 TB of data on Amazon Redshift

The Amazon Payments Data Engineering team is responsible for data ingestion, transformation, and storage of a growing dataset of more than 750 TB. The team makes these services available to more than 300 business customers around the globe. These customers include managers from the product, marketing, and programs domains; as well as data scientists, business analysts, […]

Scale your Amazon Redshift clusters up and down in minutes to get the performance you need, when you need it

Amazon Redshift is the cloud data warehouse of choice for organizations of all sizes—from fast-growing technology companies such as Turo and Yelp to Fortune 500 companies such as 21st Century Fox and Johnson & Johnson. With quickly expanding use cases, data sizes, and analyst populations, these customers have a critical need for scalable data warehouses. […]

Create cross-account and cross-region AWS Glue connections

In this blog post, we describe how to configure the networking routes and interfaces to give AWS Glue access to a data store in an AWS Region different from the one with your AWS Glue resources. In our example, we connect AWS Glue, located in Region A, to an Amazon Redshift data warehouse located in Region B.

Connect to and run ETL jobs across multiple VPCs using a dedicated AWS Glue VPC

In this blog post, we’ll go through the steps needed to build an ETL pipeline that consumes from one source in one VPC and outputs it to another source in a different VPC. We’ll set up in multiple VPCs to reproduce a situation where your database instances are in multiple VPCs for isolation related to security, audit, or other purposes.

Chasing earthquakes: How to prepare an unstructured dataset for visualization via ETL processing with Amazon Redshift

As organizations expand analytics practices and hire data scientists and other specialized roles, big data pipelines are growing increasingly complex. Sophisticated models are being built using the troves of data being collected every second. The bottleneck today is often not the know-how of analytical techniques. Rather, it’s the difficulty of building and maintaining ETL (extract, transform, and load) jobs using tools that might be unsuitable for the cloud. In this post, I demonstrate a solution to this challenge.