AWS Big Data Blog
Category: Amazon Kinesis
Analyze Amazon Connect records with Amazon Athena, AWS Glue, and Amazon QuickSight
In this blog post, we focus on how to get analytics out of the rich set of data published by Amazon Connect. We make use of an Amazon Connect data stream and create an end-to-end workflow to offer an analytical solution that can be customized based on need.
Analyze Apache Parquet optimized data using Amazon Kinesis Data Firehose, Amazon Athena, and Amazon Redshift
Kinesis Data Firehose can now save data to Amazon S3 in Apache Parquet or Apache ORC format. These are optimized columnar formats that are highly recommended for best performance and cost-savings when querying data in S3. This feature directly benefits you if you use Amazon Athena, Amazon Redshift, AWS Glue, Amazon EMR, or any other big data tools that are available from the AWS Partner Network and through the open-source community.
Getting started: Training resources for Big Data on AWS
Whether you’ve just signed up for your first AWS account or you’ve been with us for some time, there’s always something new to learn as our services evolve to meet the ever-changing needs of our customers. To help ensure you’re set up for success as you build with AWS, we put together this quick reference guide for Big Data training and resources available here on the AWS site.
Best Practices for Running Apache Kafka on AWS
The best practices described in this post are based on our experience in running and operating large-scale Kafka clusters on AWS for more than two years. Our intent for this post is to help AWS customers who are currently running Kafka on AWS, and also customers who are considering migrating on-premises Kafka deployments to AWS.
How I built a data warehouse using Amazon Redshift and AWS services in record time
Over the years, I have developed and created a number of data warehouses from scratch. Recently, I built a data warehouse for the iGaming industry single-handedly. To do it, I used the power and flexibility of Amazon Redshift and the wider AWS data management ecosystem. In this post, I explain how I was able to build a robust and scalable data warehouse without the large team of experts typically needed.
Optimize Delivery of Trending, Personalized News Using Amazon Kinesis and Related Services
Gunosy aims to provide people with the content they want without the stress of dealing with a large influx of information. We analyze user attributes, such as gender and age, and past activity logs like click-through rate (CTR). We combine this information with article attributes to provide trending, personalized news articles to users. In this post, I show you how to process user activity logs in real time using Amazon Kinesis Data Firehose, Amazon Kinesis Data Analytics, and related AWS services.
Power data ingestion into Splunk using Amazon Data Firehose
With Kinesis Data Firehose, customers can use a fully managed, reliable, and scalable data streaming solution to Splunk. In this post, we tell you a bit more about the Kinesis Data Firehose and Splunk integration. We also show you how to ingest large amounts of data into Splunk using Kinesis Data Firehose.
Preprocessing Data in Amazon Kinesis Analytics with AWS Lambda
Kinesis Analytics now gives you the option to preprocess your data with AWS Lambda. This gives you a great deal of flexibility in defining what data gets analyzed by your Kinesis Analytics application. In this post, I discuss some common use cases for preprocessing, and walk you through an example to help highlight its applicability.
AWS CloudFormation Supports Amazon Kinesis Analytics Applications
You can now provision and manage resources for Amazon Kinesis Analytics applications using AWS CloudFormation. Kinesis Analytics is the easiest way to process streaming data in real time with standard SQL, without having to learn new programming languages or processing frameworks.
Perform Near Real-time Analytics on Streaming Data with Amazon Kinesis and Amazon Elasticsearch Service
August 30, 2023: Amazon Kinesis Data Analytics has been renamed to Amazon Managed Service for Apache Flink. Read the announcement in the AWS News Blog and learn more. Nowadays, streaming data is seen and used everywhere—from social networks, to mobile and web applications, IoT devices, instrumentation in data centers, and many other sources. As the […]