AWS Big Data Blog

Category: Amazon EMR

Secure your data on Amazon EMR using native EBS and per bucket S3 encryption options

This post provides a detailed walkthrough of two new encryption options to help you secure your EMR cluster that handles sensitive data. The first option is native EBS encryption to encrypt volumes attached to EMR clusters. The second option is an Amazon S3 encryption that allows you to use different encryption modes and customer master keys (CMKs) for individual S3 buckets with Amazon EMR.

Install Python libraries on a running cluster with EMR Notebooks

This post discusses installing notebook-scoped libraries on a running cluster directly via an EMR Notebook. Before this feature, you had to rely on bootstrap actions or use custom AMI to install additional libraries that are not pre-packaged with the EMR AMI when you provision the cluster. This post also discusses how to use the pre-installed Python libraries available locally within EMR Notebooks to analyze and plot your results. This capability is useful in scenarios in which you don’t have access to a PyPI repository but need to analyze and visualize a dataset.

Implement perimeter security in Amazon EMR using Apache Knox

Perimeter security helps secure Apache Hadoop cluster resources to users accessing from outside the cluster. It enables a single access point for all REST and HTTP interactions with Apache Hadoop clusters and simplifies client interaction with the cluster. For example, client applications must acquire Kerberos tickets using Kinit or SPNEGO before interacting with services on Kerberos enabled clusters. In this post, we walk through setup of Apache Knox to enable perimeter security for EMR clusters.

Modify your cluster on the fly with Amazon EMR reconfiguration

April 2024: This post was reviewed for accuracy. If you are a developer or data scientist using long-running Amazon EMR clusters, you face fast-changing workloads. These changes often require different application configurations to run optimally on your cluster. With the reconfiguration feature, you can now change configurations on running EMR clusters. Starting with EMR release […]

Performance updates to Apache Spark in Amazon EMR 5.24 – Up to 13x better performance compared to Amazon EMR 5.16

Amazon EMR release 5.24.0 includes several optimizations in Spark that improve query performance. To evaluate the performance improvements, we used TPC-DS benchmark queries with 3-TB scale and ran them on a 6-node c4.8xlarge EMR cluster with data in Amazon S3. We observed up to 13X better query performance on EMR 5.24 compared to EMR 5.16 when operating with a similar configuration.