AWS Machine Learning Blog

Multi-tenant RAG with Amazon Bedrock Knowledge Bases

Organizations are continuously seeking ways to use their proprietary knowledge and domain expertise to gain a competitive edge. With the advent of foundation models (FMs) and their remarkable natural language processing capabilities, a new opportunity has emerged to unlock the value of their data assets. As organizations strive to deliver personalized experiences to customers using […]

How Amazon trains sequential ensemble models at scale with Amazon SageMaker Pipelines

Ensemble models are becoming popular within the ML communities. They generate more accurate predictions through combining the predictions of multiple models. Pipelines can quickly be used to create and end-to-end ML pipeline for ensemble models. This enables developers to build highly accurate models while maintaining efficiency, and reproducibility. In this post, we provide an example of an ensemble model that was trained and deployed using Pipelines.

Solution overview

Implementing login node load balancing in SageMaker HyperPod for enhanced multi-user experience

In this post, we explore a solution for implementing load balancing across login nodes in Slurm-based HyperPod clusters. By distributing user activity evenly across all available nodes, this approach provides more consistent performance, better resource utilization, and a smoother experience for all users. We guide you through the setup process, providing practical steps to achieve effective load balancing in your HyperPod clusters.

How Clearwater Analytics is revolutionizing investment management with generative AI and Amazon SageMaker JumpStart

In this post, we explore Clearwater Analytics’ foray into generative AI, how they’ve architected their solution with Amazon SageMaker, and dive deep into how Clearwater Analytics is using LLMs to take advantage of more than 18 years of experience within the investment management domain while optimizing model cost and performance.

How Twitch used agentic workflow with RAG on Amazon Bedrock to supercharge ad sales

In this post, we demonstrate how we innovated to build a Retrieval Augmented Generation (RAG) application with agentic workflow and a knowledge base on Amazon Bedrock. We implemented the RAG pipeline in a Slack chat-based assistant to empower the Amazon Twitch ads sales team to move quickly on new sales opportunities.

Accelerate analysis and discovery of cancer biomarkers with Amazon Bedrock Agents

Bedrock multi-agent collaboration enables developers to build, deploy, and manage multiple specialized agents working together seamlessly to address increasingly complex business workflows. In this post, we show you how agentic workflows with Amazon Bedrock Agents can help accelerate this journey for research scientists with a natural language interface. We define an example analysis pipeline, specifically for lung cancer survival with clinical, genomics, and imaging modalities of biomarkers. We showcase a variety of specialized agents including a biomarker database analyst, statistician, clinical evidence researcher, and medical imaging expert in collaboration with a supervisor agent. We demonstrate advanced capabilities of agents for self-review and planning that help build trust with end users by breaking down complex tasks into a series of steps and showing the chain of thought to generate the final answer.

Accelerate your ML lifecycle using the new and improved Amazon SageMaker Python SDK – Part 2: ModelBuilder

In Part 1 of this series, we introduced the newly launched ModelTrainer class on the Amazon SageMaker Python SDK and its benefits, and showed you how to fine-tune a Meta Llama 3.1 8B model on a custom dataset. In this post, we look at the enhancements to the ModelBuilder class, which lets you seamlessly deploy a model from ModelTrainer to a SageMaker endpoint, and provides a single interface for multiple deployment configurations.

Accelerate your ML lifecycle using the new and improved Amazon SageMaker Python SDK – Part 1: ModelTrainer

In this post, we focus on the ModelTrainer class for simplifying the training experience. The ModelTrainer class provides significant improvements over the current Estimator class, which are discussed in detail in this post. We show you how to use the ModelTrainer class to train your ML models, which includes executing distributed training using a custom script or container. In Part 2, we show you how to build a model and deploy to a SageMaker endpoint using the improved ModelBuilder class.

Amazon Q Apps supports customization and governance of generative AI-powered apps

In this post, we examine how these features enhance the capabilities of Amazon Q Apps. We explore the new customization options, detailing how these advancements make Amazon Q Apps more accessible and applicable to a wider range of enterprise customers. We focus on key features such as custom labels, verified apps, private sharing, and data collection apps (preview).