AWS Machine Learning Blog
Integrating Amazon Polly with legacy IVR systems by converting output to WAV format
Amazon Web Services (AWS) offers a rich stack of artificial intelligence (AI) and machine learning (ML) services that help automate several components of the customer service industry. Amazon Polly, an AI generated text-to-speech service, enables you to automate and scale your interactive voice solutions, helping to improve productivity and reduce costs. You might face common […]
Introducing Amazon SageMaker Reinforcement Learning Components for open-source Kubeflow pipelines
This blog post was co-authored by AWS and Max Kelsen. Max Kelsen is one of Australia’s leading Artificial Intelligence (AI) and Machine Learning (ML) solutions businesses. The company delivers innovation, directly linked to the generation of business value and competitive advantage to customers in Australia and globally, including Fortune 500 companies. Max Kelsen is also […]
Analyzing open-source ML pipeline models in real time using Amazon SageMaker Debugger
Open-source workflow managers are popular because they make it easy to orchestrate machine learning (ML) jobs for productions. Taking models into productions following a GitOps pattern is best managed by a container-friendly workflow manager, also known as MLOps. Kubeflow Pipelines (KFP) is one of the Kubernetes-based workflow managers used today. However, it doesn’t provide all […]
Translate, redact, and analyze text using SQL functions with Amazon Athena, Amazon Translate, and Amazon Comprehend
October 2021 Update (v0.3.0): Added support for Amazon Comprehend DetectKeyPhrases You have Amazon Simple Storage Service (Amazon S3) buckets full of files containing incoming customer chats, product reviews, and social media feeds, in many languages. Your task is to identify the products that people are talking about, determine if they’re expressing happy thoughts or sad […]
Setting up Amazon Personalize with AWS Glue
Data can be used in a variety of ways to satisfy the needs of different business units, such as marketing, sales, or product. In this post, we focus on using data to create personalized recommendations to improve end-user engagement. Most ecommerce applications consume a huge amount of customer data that can be used to provide […]
Amazon Rekognition Custom Labels Community Showcase
In our Community Showcase, Amazon Web Services (AWS) highlights projects created by AWS Heroes and AWS Community Builders. We worked with AWS Machine Learning (ML) Heroes and AWS ML Community Builders to bring to life projects and use cases that detect custom objects with Amazon Rekognition Custom Labels. The AWS ML community is a vibrant […]
Using container images to run TensorFlow models in AWS Lambda
TensorFlow is an open-source machine learning (ML) library widely used to develop neural networks and ML models. Those models are usually trained on multiple GPU instances to speed up training, resulting in expensive training time and model sizes up to a few gigabytes. After they’re trained, these models are deployed in production to produce inferences. […]
Process documents containing handwritten tabular content using Amazon Textract and Amazon A2I
Even in this digital age where more and more companies are moving to the cloud and using machine learning (ML) or technology to improve business processes, we still see a vast number of companies reach out and ask about processing documents, especially documents with handwriting. We see employment forms, time cards, and financial applications with […]
Talkdesk and AWS: What AI and speech-to-text mean for the future of contact centers and a better customer experience
This is a guest post authored by Ben Rigby, the VP, Global Head of Product & Engineering, Artificial Intelligence and Machine Learning at Talkdesk. Talkdesk broadens contact center machine learning capabilities with AWS Contact Center Intelligence. At Talkdesk, we’re driven to reduce friction in the customer journey. Whether that’s surfacing relevant content to agents while […]
Architect and build the full machine learning lifecycle with AWS: An end-to-end Amazon SageMaker demo
In this tutorial, we will walk through the entire machine learning (ML) lifecycle and show you how to architect and build an ML use case end to end using Amazon SageMaker. Amazon SageMaker provides a rich set of capabilities that enable data scientists, machine learning engineers, and developers to prepare, build, train, and deploy ML […]