AWS Machine Learning Blog
Improve your data science workflow with a multi-branch training MLOps pipeline using AWS
In this post, you will learn how to create a multi-branch training MLOps continuous integration and continuous delivery (CI/CD) pipeline using AWS CodePipeline and AWS CodeCommit, in addition to Jenkins and GitHub. I discuss the concept of experiment branches, where data scientists can work in parallel and eventually merge their experiment back into the main […]
Create a dashboard with SEC text for financial NLP in Amazon SageMaker JumpStart
Amazon SageMaker JumpStart helps you quickly and easily get started with machine learning (ML) and provides a set of solutions for the most common use cases that can be trained and deployed readily with just a few clicks. JumpStart also includes a collection of multimodal financial text analysis tools, including example notebooks, text models, and […]
Accelerate computer vision training using GPU preprocessing with NVIDIA DALI on Amazon SageMaker
AWS customers are increasingly training and fine-tuning large computer vision (CV) models with hundreds of terabytes of data and millions of parameters. For example, advanced driver assistance systems (ADAS) train perception models to detect pedestrians, road signs, vehicles, traffic lights, and other objects. Identity verification systems for the financial services industry train CV models to […]
Choose the best AI accelerator and model compilation for computer vision inference with Amazon SageMaker
AWS customers are increasingly building applications that are enhanced with predictions from computer vision models. For example, a fitness application monitors the body posture of users while exercising in front of a camera and provides live feedback to the users as well as periodic insights. Similarly, an inventory inspection tool in a large warehouse captures […]
Amazon SageMaker rated as top AI Service Cloud in analyst firm KuppingerCole’s evaluation of AI Service Clouds
As more European organizations move from experimentation to production for AI projects, the importance of running these projects on a scalable, secure, and cost-efficient platform becomes clear. Building AI solutions from scratch is often beyond the capabilities of many organizations, especially because it requires in-house AI expertise, which is in short supply. According to analyst […]
Scan Amazon S3 buckets for content moderation using S3 Batch and Amazon Rekognition
Dealing with content in large scale is often challenging, costly, and a heavy lift operation. The volume of user-generated and third-party content has been increasing substantially in industries like social media, ecommerce, online advertising, and media sharing. Customers may want to review this content to ensure that it follows corporate governance and regulations. But they […]
Gamify Amazon SageMaker Ground Truth labeling workflows via a bar chart race
Labeling is an indispensable stage of data preprocessing in supervised learning. Amazon SageMaker Ground Truth is a fully managed data labeling service that makes it easy to build highly accurate training datasets for machine learning. Ground Truth helps improve the quality of labels through annotation consolidation and audit workflows. Ground Truth is easy to use, […]
HawkEye 360 predicts vessel risk using the Deep Graph Library and Amazon Neptune
This post is co-written by Ian Avilez and Tim Pavlick from HawkEye 360. HawkEye 360 is a commercial radio frequency (RF) constellation, data, and analytics provider. Their signals of interest include very high frequency (VHF) push-to-talk radios, maritime radar systems, Automatic Identification System (AIS) beacons, emergency beacons, and more. The signals of interest library will […]
Amazon Personalize can now unlock intrinsic signals in your catalog to recommend similar items
Today, we’re excited to announce a new similar items recommendation recipe (aws-similar-items) in Amazon Personalize that helps you leverage your users’ interaction histories and what you know about the items in your catalog to deliver relevant recommendations. Across Amazon, we provide personalized experiences for each of our users, and based on a user’s interests, we […]
How NSF’s iHARP researchers are enabling active learning for polar ice analysis using Amazon SageMaker and Amazon A2I
The University of Maryland, Baltimore County’s Bina lab is a multidisciplinary research lab for employing advanced computer vision, machine learning (ML), and remote sensing techniques to discover new knowledge of our environment, especially in the Arctic and Antarctic regions. The lab’s work is supported by NSF BIGDATA awards (IIS-1947584, IIS-1838230), the NSF HDR Institute award […]