AWS Machine Learning Blog

Category: Customer Solutions

Embedding secure generative AI in mission-critical public safety applications

This post shows how Mark43 uses Amazon Q Business to create a secure, generative AI-powered assistant that drives operational efficiency and improves community service. We explain how they embedded Amazon Q Business web experience in their web application with low code, so they could focus on creating a rich AI experience for their customers.

How FP8 boosts LLM training by 18% on Amazon SageMaker P5 instances

LLM training has seen remarkable advances in recent years, with organizations pushing the boundaries of what’s possible in terms of model size, performance, and efficiency. In this post, we explore how FP8 optimization can significantly speed up large model training on Amazon SageMaker P5 instances.

Images 4 & 5 – the author hoists the trophy from the 2022 London Summit (left) DeepRacer Community members and Pit Crew hosting a AWS DeepRacer workshop at re:Invent 2023 (right)

Racing into the future: How AWS DeepRacer fueled my AI and ML journey

In 2018, I sat in the audience at AWS re:Invent as Andy Jassy announced AWS DeepRacer—a fully autonomous 1/18th scale race car driven by reinforcement learning. At the time, I knew little about AI or machine learning (ML). As an engineer transitioning from legacy networks to cloud technologies, I had never considered myself a developer. […]

DXC transforms data exploration for their oil and gas customers with LLM-powered tools

In this post, we show you how DXC and AWS collaborated to build an AI assistant using large language models (LLMs), enabling users to access and analyze different data types from a variety of data sources. The AI assistant is powered by an intelligent agent that routes user questions to specialized tools that are optimized for different data types such as text, tables, and domain-specific formats. It uses the LLM’s ability to understand natural language, write code, and reason about conversational context.

Text-to-SQL Solution Pipeline

How MSD uses Amazon Bedrock to translate natural language into SQL for complex healthcare databases

MSD, a leading pharmaceutical company, collaborates with AWS to implement a powerful text-to-SQL generative AI solution using Amazon Bedrock and Anthropic’s Claude 3.5 Sonnet model. This approach streamlines data extraction from complex healthcare databases like DE-SynPUF, enabling analysts to generate SQL queries from natural language questions. The solution addresses challenges such as coded columns, non-intuitive names, and ambiguous queries, significantly reducing query time and democratizing data access.

How InsuranceDekho transformed insurance agent interactions using Amazon Bedrock and generative AI

In this post, we explain how InsuranceDekho harnessed the power of generative AI using Amazon Bedrock and Anthropic’s Claude to provide responses to customer queries on policy coverages, exclusions, and more. This let our customer care agents and POSPs confidently help our customers understand the policies without reaching out to insurance subject matter experts (SMEs) or memorizing complex plans while providing sales and after-sales services. The use of this solution has improved sales, cross-selling, and overall customer service experience.

How GoDaddy built Lighthouse, an interaction analytics solution to generate insights on support interactions using Amazon Bedrock

In this post, we discuss how GoDaddy’s Care & Services team, in close collaboration with the  AWS GenAI Labs team, built Lighthouse—a generative AI solution powered by Amazon Bedrock. Amazon Bedrock is a fully managed service that makes foundation models (FMs) from leading AI startups and Amazon available through an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case. With Amazon Bedrock, GoDaddy’s Lighthouse mines insights from customer care interactions using crafted prompts to identify top call drivers and reduce friction points in customers’ product and website experiences, leading to improved customer experience.

Principal Financial Group uses QnABot on AWS and Amazon Q Business to enhance workforce productivity with generative AI

In this post, we explore how Principal used QnABot paired with Amazon Q Business and Amazon Bedrock to create Principal AI Generative Experience: a user-friendly, secure internal chatbot for faster access to information. Using generative AI, Principal’s employees can now focus on deeper human judgment based decisioning, instead of spending time scouring for answers from data sources manually.

Generative AI for agriculture: How Agmatix is improving agriculture with Amazon Bedrock

This post describes how Agmatix, a pioneering Agtech company powering R&D for input companies and digital agronomic solutions, uses Amazon Bedrock and AWS fully featured services to enhance the research process and development of higher-yielding seeds and sustainable molecules for global agriculture.

How Zalando optimized large-scale inference and streamlined ML operations on Amazon SageMaker

This post is cowritten with Mones Raslan, Ravi Sharma and Adele Gouttes from Zalando. Zalando SE is one of Europe’s largest ecommerce fashion retailers with around 50 million active customers. Zalando faces the challenge of regular (weekly or daily) discount steering for more than 1 million products, also referred to as markdown pricing. Markdown pricing is […]