AWS Machine Learning Blog

Category: Learning Levels

Maximize your Amazon Translate architecture using strategic caching layers

In this post, we explain how setting up a cache for frequently accessed translations can benefit organizations that need scalable, multi-language translation across large volumes of content. You’ll learn how to build a simple caching mechanism for Amazon Translate to accelerate turnaround times.

Use zero-shot large language models on Amazon Bedrock for custom named entity recognition

Name entity recognition (NER) is the process of extracting information of interest, called entities, from structured or unstructured text. Manually identifying all mentions of specific types of information in documents is extremely time-consuming and labor-intensive. Some examples include extracting players and positions in an NFL game summary, products mentioned in an AWS keynote transcript, or […]

Safeguard flow with Amazon Bedrock

Safeguard a generative AI travel agent with prompt engineering and Amazon Bedrock Guardrails

In this post, we explore a comprehensive solution for addressing the challenges of securing a virtual travel agent powered by generative AI. We provide an end-to-end example and its accompanying code to demonstrate how to implement prompt engineering techniques, content moderation, and various guardrails to make sure the assistant operates within predefined boundaries by relying on Amazon Bedrock Guardrails. Additionally, we delve into monitoring strategies to track the activation of these safeguards, enabling proactive identification and mitigation of potential issues.

Accelerate deep learning training and simplify orchestration with AWS Trainium and AWS Batch

In large language model (LLM) training, effective orchestration and compute resource management poses a significant challenge. Automation of resource provisioning, scaling, and workflow management is vital for optimizing resource usage and streamlining complex workflows, thereby achieving efficient deep learning training processes. Simplified orchestration enables researchers and practitioners to focus more on model experimentation, hyperparameter tuning, […]

Scalable intelligent document processing using Amazon Bedrock

In today’s data-driven business landscape, the ability to efficiently extract and process information from a wide range of documents is crucial for informed decision-making and maintaining a competitive edge. However, traditional document processing workflows often involve complex and time-consuming manual tasks, hindering productivity and scalability. In this post, we discuss an approach that uses the […]

Use weather data to improve forecasts with Amazon SageMaker Canvas

Photo by Zbynek Burival on Unsplash Time series forecasting is a specific machine learning (ML) discipline that enables organizations to make informed planning decisions. The main idea is to supply historic data to an ML algorithm that can identify patterns from the past and then use those patterns to estimate likely values about unseen periods […]

Reimagining software development with the Amazon Q Developer Agent

Amazon Q Developer uses generative artificial intelligence (AI) to deliver state-of-the-art accuracy for all developers, taking first place on the leaderboard for SWE-bench, a dataset that tests a system’s ability to automatically resolve GitHub issues. This post describes how to get started with the software development agent, gives an overview of how the agent works, and discusses its performance on public benchmarks. We also delve into the process of getting started with the Amazon Q Developer Agent and give an overview of the underlying mechanisms that make it a state-of-the-art feature development agent.

Get started quickly with AWS Trainium and AWS Inferentia using AWS Neuron DLAMI and AWS Neuron DLC

Starting with the AWS Neuron 2.18 release, you can now launch Neuron DLAMIs (AWS Deep Learning AMIs) and Neuron DLCs (AWS Deep Learning Containers) with the latest released Neuron packages on the same day as the Neuron SDK release. When a Neuron SDK is released, you’ll now be notified of the support for Neuron DLAMIs […]

Detect email phishing attempts using Amazon Comprehend

Phishing is the process of attempting to acquire sensitive information such as usernames, passwords and credit card details by masquerading as a trustworthy entity using email, telephone or text messages. There are many types of phishing based on the mode of communication and targeted victims. In an Email phishing attempt, an email is sent as […]