AWS Machine Learning Blog

Category: Amazon SageMaker

Speed up your AI inference workloads with new NVIDIA-powered capabilities in Amazon SageMaker

At re:Invent 2024, we are excited to announce new capabilities to speed up your AI inference workloads with NVIDIA accelerated computing and software offerings on Amazon SageMaker. In this post, we will explore how you can use these new capabilities to enhance your AI inference on Amazon SageMaker. We’ll walk through the process of deploying NVIDIA NIM microservices from AWS Marketplace for SageMaker Inference. We’ll then dive into NVIDIA’s model offerings on SageMaker JumpStart, showcasing how to access and deploy the Nemotron-4 model directly in the JumpStart interface. This will include step-by-step instructions on how to find the Nemotron-4 model in the JumpStart catalog, select it for your use case, and deploy it with a few clicks.

Unlock cost savings with the new scale down to zero feature in SageMaker Inference

Today at AWS re:Invent 2024, we are excited to announce a new feature for Amazon SageMaker inference endpoints: the ability to scale SageMaker inference endpoints to zero instances. This long-awaited capability is a game changer for our customers using the power of AI and machine learning (ML) inference in the cloud.

Supercharge your auto scaling for generative AI inference – Introducing Container Caching in SageMaker Inference

Today at AWS re:Invent 2024, we are excited to announce the new Container Caching capability in Amazon SageMaker, which significantly reduces the time required to scale generative AI  models for inference. This innovation allows you to scale your models faster, observing up to 56% reduction in latency when scaling a new model copy and up to 30% when adding a model copy on a new instance. In this post, we explore the new Container Caching feature for SageMaker inference, addressing the challenges of deploying and scaling large language models (LLMs).

Introducing Fast Model Loader in SageMaker Inference: Accelerate autoscaling for your Large Language Models (LLMs) – part 1

Today at AWS re:Invent 2024, we are excited to announce a new capability in Amazon SageMaker Inference that significantly reduces the time required to deploy and scale LLMs for inference using LMI: Fast Model Loader. In this post, we delve into the technical details of Fast Model Loader, explore its integration with existing SageMaker workflows, discuss how you can get started with this powerful new feature, and share customer success stories.

Introducing Fast Model Loader in SageMaker Inference: Accelerate autoscaling for your Large Language Models (LLMs) – Part 2

In this post, we provide a detailed, hands-on guide to implementing Fast Model Loader in your LLM deployments. We explore two approaches: using the SageMaker Python SDK for programmatic implementation, and using the Amazon SageMaker Studio UI for a more visual, interactive experience. Whether you’re a developer who prefers working with code or someone who favors a graphical interface, you’ll learn how to take advantage of this powerful feature to accelerate your LLM deployments.

Easily deploy and manage hundreds of LoRA adapters with SageMaker efficient multi-adapter inference

The new efficient multi-adapter inference feature of Amazon SageMaker unlocks exciting possibilities for customers using fine-tuned models. This capability integrates with SageMaker inference components to allow you to deploy and manage hundreds of fine-tuned Low-Rank Adaptation (LoRA) adapters through SageMaker APIs. In this post, we show how to use the new efficient multi-adapter inference feature in SageMaker.

Embodied AI Chess with Amazon Bedrock

In this post, we demonstrate Embodied AI Chess with Amazon Bedrock, bringing a new dimension to traditional chess through generative AI capabilities. Our setup features a smart chess board that can detect moves in real time, paired with two robotic arms executing those moves. Each arm is controlled by different FMs—base or custom. This physical implementation allows you to observe and experiment with how different generative AI models approach complex gaming strategies in real-world chess matches.

Efficiently train models with large sequence lengths using Amazon SageMaker model parallel

In this post, we demonstrate how the Amazon SageMaker model parallel library (SMP) addresses this need through support for new features such as 8-bit floating point (FP8) mixed-precision training for accelerated training performance and context parallelism for processing large input sequence lengths, expanding the list of its existing features.

Flow diagram of custom hallucination detection and mitigation : The user's question is fed to a search engine (with optional LLM-based step to pre-process it to a good search query). The documents or snippets returned by the search engine, together with the user's question, are inserted into a prompt template - and an LLM generates a final answer based on the retrieved documents. The final answer can be evaluated against the reference answer from the dataset to get a custom hallucination score. Based on a pre-defined empirical threshold, a customer service agent is requested to join the conversation using SNS notification

Reducing hallucinations in large language models with custom intervention using Amazon Bedrock Agents

This post demonstrates how to use Amazon Bedrock Agents, Amazon Knowledge Bases, and the RAGAS evaluation metrics to build a custom hallucination detector and remediate it by using human-in-the-loop. The agentic workflow can be extended to custom use cases through different hallucination remediation techniques and offers the flexibility to detect and mitigate hallucinations using custom actions.

Using LLMs to fortify cyber defenses: Sophos’s insight on strategies for using LLMs with Amazon Bedrock and Amazon SageMaker

In this post, SophosAI shares insights in using and evaluating an out-of-the-box LLM for the enhancement of a security operations center’s (SOC) productivity using Amazon Bedrock and Amazon SageMaker. We use Anthropic’s Claude 3 Sonnet on Amazon Bedrock to illustrate the use cases.