AWS Machine Learning Blog

Category: Artificial Intelligence

Talk to your slide deck using multimodal foundation models on Amazon Bedrock – Part 3

In Parts 1 and 2 of this series, we explored ways to use the power of multimodal FMs such as Amazon Titan Multimodal Embeddings, Amazon Titan Text Embeddings, and Anthropic’s Claude 3 Sonnet. In this post, we compared the approaches from an accuracy and pricing perspective.

Automate actions across enterprise applications using Amazon Q Business plugins

Amazon Q Business is a generative AI-powered assistant that enhances employee productivity by solving problems, generating content, and providing insights across enterprise data sources. Beyond searching indexed third-party services, employees need access to dynamic, near real-time data such as stock prices, vacation balances, and location tracking, which is made possible through Amazon Q Business plugins. […]

solution architecture

Accelerating ML experimentation with enhanced security: AWS PrivateLink support for Amazon SageMaker with MLflow

With access to a wide range of generative AI foundation models (FM) and the ability to build and train their own machine learning (ML) models in Amazon SageMaker, users want a seamless and secure way to experiment with and select the models that deliver the most value for their business. In the initial stages of an ML […]

Mistral-NeMo-Instruct-2407 and Mistral-NeMo-Base-2407 are now available on SageMaker JumpStart

Today, we are excited to announce that Mistral-NeMo-Base-2407 and Mistral-NeMo-Instruct-2407 large language models from Mistral AI that excel at text generation, are available for customers through Amazon SageMaker JumpStart. In this post, we walk through how to discover, deploy and use the Mistral-NeMo-Instruct-2407 and Mistral-NeMo-Base-2407 models for a variety of real-world use cases.

Speed up your cluster procurement time with Amazon SageMaker HyperPod training plans

In this post, we demonstrate how you can use Amazon SageMaker HyperPod training plans, to bring down your training cluster procurement wait time. We guide you through a step-by-step implementation on how you can use the (AWS CLI) or the AWS Management Console to find, review, and create optimal training plans for your specific compute and timeline needs. We further guide you through using the training plan to submit SageMaker training jobs or create SageMaker HyperPod clusters.

Amazon Bedrock Marketplace now includes NVIDIA models: Introducing NVIDIA Nemotron-4 NIM microservices

At AWS re:Invent 2024, we are excited to introduce Amazon Bedrock Marketplace. This a revolutionary new capability within Amazon Bedrock that serves as a centralized hub for discovering, testing, and implementing foundation models (FMs). In this post, we discuss the advantages and capabilities of Amazon Bedrock Marketplace and Nemotron models, and how to get started.

Figure 2: Depicting high level architecture of Tecton & SageMaker showing end-to-end feature lifecycle

Real value, real time: Production AI with Amazon SageMaker and Tecton

In this post, we discuss how Amazon SageMaker and Tecton work together to simplify the development and deployment of production-ready AI applications, particularly for real-time use cases like fraud detection. The integration enables faster time to value by abstracting away complex engineering tasks, allowing teams to focus on building features and use cases while providing a streamlined framework for both offline training and online serving of ML models.

Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models

In this post, we explore how to deploy AI models from SageMaker JumpStart and use them with Amazon Bedrock’s powerful features. Users can combine SageMaker JumpStart’s model hosting with Bedrock’s security and monitoring tools. We demonstrate this using the Gemma 2 9B Instruct model as an example, showing how to deploy it and use Bedrock’s advanced capabilities.