AWS Machine Learning Blog
Category: Artificial Intelligence
Introducing SageMaker Core: A new object-oriented Python SDK for Amazon SageMaker
In this post, we show how the SageMaker Core SDK simplifies the developer experience while providing API for seamlessly executing various steps in a general ML lifecycle. We also discuss the main benefits of using this SDK along with sharing relevant resources to learn more about this SDK.
Create a data labeling project with Amazon SageMaker Ground Truth Plus
Amazon SageMaker Ground Truth is a powerful data labeling service offered by AWS that provides a comprehensive and scalable platform for labeling various types of data, including text, images, videos, and 3D point clouds, using a diverse workforce of human annotators. In addition to traditional custom-tailored deep learning models, SageMaker Ground Truth also supports generative […]
Create a multimodal chatbot tailored to your unique dataset with Amazon Bedrock FMs
In this post, we show how to create a multimodal chat assistant on Amazon Web Services (AWS) using Amazon Bedrock models, where users can submit images and questions, and text responses will be sourced from a closed set of proprietary documents.
Design secure generative AI application workflows with Amazon Verified Permissions and Amazon Bedrock Agents
In this post, we demonstrate how to design fine-grained access controls using Verified Permissions for a generative AI application that uses Amazon Bedrock Agents to answer questions about insurance claims that exist in a claims review system using textual prompts as inputs and outputs.
Boost productivity by using AI in cloud operational health management
In this post, we show you how to create an AI-powered, event-driven operations assistant that automatically responds to operational events. The assistant can filter out irrelevant events (based on your organization’s policies), recommend actions, create and manage issue tickets in integrated IT service management (ITSM) tools to track actions, and query knowledge bases for insights related to operational events.
How Indeed builds and deploys fine-tuned LLMs on Amazon SageMaker
In this post, we describe how using the capabilities of Amazon SageMaker has accelerated Indeed’s AI research, development velocity, flexibility, and overall value in our pursuit of using Indeed’s unique and vast data to leverage advanced LLMs.
Improve LLM application robustness with Amazon Bedrock Guardrails and Amazon Bedrock Agents
In this post, we demonstrate how Amazon Bedrock Guardrails can improve the robustness of the agent framework. We are able to stop our chatbot from responding to non-relevant queries and protect personal information from our customers, ultimately improving the robustness of our agentic implementation with Amazon Bedrock Agents.
Dive deep into vector data stores using Amazon Bedrock Knowledge Bases
In this post, we dive deep into the vector database options available as part of Amazon Bedrock Knowledge Bases and the applicable use cases, and look at working code examples.
Enable or disable ACL crawling safely in Amazon Q Business
Amazon Q Business recently added support for administrators to modify the default access control list (ACL) crawling feature for data source connectors. Amazon Q Business is a fully managed, AI powered assistant with enterprise-grade security and privacy features. It includes over 40 data source connectors that crawl and index documents. By default, Amazon Q Business […]
SK Telecom improves telco-specific Q&A by fine-tuning Anthropic’s Claude models in Amazon Bedrock
In this post, we share how SKT customizes Anthropic Claude models for telco-specific Q&A regarding technical telecommunication documents of SKT using Amazon Bedrock.