AWS Machine Learning Blog
Category: Generative AI
Automating product description generation with Amazon Bedrock
In today’s ever-evolving world of ecommerce, the influence of a compelling product description cannot be overstated. It can be the decisive factor that turns a potential visitor into a paying customer or sends them clicking off to a competitor’s site. The manual creation of these descriptions across a vast array of products is a labor-intensive […]
How SnapLogic built a text-to-pipeline application with Amazon Bedrock to translate business intent into action
This post was co-written with Greg Benson, Chief Scientist; Aaron Kesler, Sr. Product Manager; and Rich Dill, Enterprise Solutions Architect from SnapLogic. Many customers are building generative AI apps on Amazon Bedrock and Amazon CodeWhisperer to create code artifacts based on natural language. This use case highlights how large language models (LLMs) are able to […]
Your guide to generative AI and ML at AWS re:Invent 2023
Yes, the AWS re:Invent season is upon us and as always, the place to be is Las Vegas! You marked your calendars, you booked your hotel, and you even purchased the airfare. Now all you need is some guidance on generative AI and machine learning (ML) sessions to attend at this twelfth edition of re:Invent. And although generative AI has appeared in previous events, this year we’re taking it to the next level. In addition to several exciting announcements during keynotes, most of the sessions in our track will feature generative AI in one form or another, so we can truly call our track “Generative AI and ML.” In this post, we give you a sense of how the track is organized and highlight a few sessions we think you’ll like. And although our track focuses on generative AI, many other tracks have related sessions. Use the “Generative AI” tag as you are browsing the session catalog to find them.
Build a contextual chatbot for financial services using Amazon SageMaker JumpStart, Llama 2 and Amazon OpenSearch Serverless with Vector Engine
The financial service (FinServ) industry has unique generative AI requirements related to domain-specific data, data security, regulatory controls, and industry compliance standards. In addition, customers are looking for choices to select the most performant and cost-effective machine learning (ML) model and the ability to perform necessary customization (fine-tuning) to fit their business use cases. Amazon […]
Geospatial generative AI with Amazon Bedrock and Amazon Location Service
Today, geospatial workflows typically consist of loading data, transforming it, and then producing visual insights like maps, text, or charts. Generative AI can automate these tasks through autonomous agents. In this post, we discuss how to use foundation models from Amazon Bedrock to power agents to complete geospatial tasks. These agents can perform various tasks […]
Amazon Textract’s new Layout feature introduces efficiencies in general purpose and generative AI document processing tasks
Amazon Textract is a machine learning (ML) service that automatically extracts text, handwriting, and data from any document or image. AnalyzeDocument Layout is a new feature that allows customers to automatically extract layout elements such as paragraphs, titles, subtitles, headers, footers, and more from documents. Layout extends Amazon Textract’s word and line detection by automatically […]
Use Amazon SageMaker Studio to build a RAG question answering solution with Llama 2, LangChain, and Pinecone for fast experimentation
Retrieval Augmented Generation (RAG) allows you to provide a large language model (LLM) with access to data from external knowledge sources such as repositories, databases, and APIs without the need to fine-tune it. When using generative AI for question answering, RAG enables LLMs to answer questions with the most relevant, up-to-date information and optionally cite […]
KT’s journey to reduce training time for a vision transformers model using Amazon SageMaker
KT Corporation is one of the largest telecommunications providers in South Korea, offering a wide range of services including fixed-line telephone, mobile communication, and internet, and AI services. KT’s AI Food Tag is an AI-based dietary management solution that identifies the type and nutritional content of food in photos using a computer vision model. This […]
Build a foundation model (FM) powered customer service bot with Amazon Bedrock agents
From enhancing the conversational experience to agent assistance, there are plenty of ways that generative artificial intelligence (AI) and foundation models (FMs) can help deliver faster, better support. With the increasing availability and diversity of FMs, it’s difficult to experiment and keep up-to-date with the latest model versions. Amazon Bedrock is a fully managed service […]
Fine-tune Whisper models on Amazon SageMaker with LoRA
Whisper is an Automatic Speech Recognition (ASR) model that has been trained using 680,000 hours of supervised data from the web, encompassing a range of languages and tasks. One of its limitations is the low-performance on low-resource languages such as Marathi language and Dravidian languages, which can be remediated with fine-tuning. However, fine-tuning a Whisper […]