AWS Machine Learning Blog

Category: Generative AI

Ground truth curation and metric interpretation best practices for evaluating generative AI question answering using FMEval

Ground truth curation and metric interpretation best practices for evaluating generative AI question answering using FMEval

In this post, we discuss best practices for working with Foundation Model Evaluations Library (FMEval) in ground truth curation and metric interpretation for evaluating question answering applications for factual knowledge and quality.

Effectively manage foundation models for generative AI applications with Amazon SageMaker Model Registry

Effectively manage foundation models for generative AI applications with Amazon SageMaker Model Registry

In this post, we explore the new features of Model Registry that streamline foundation model (FM) management: you can now register unzipped model artifacts and pass an End User License Agreement (EULA) acceptance flag without needing users to intervene.

How Thomson Reuters Labs achieved AI/ML innovation at pace with AWS MLOps services

How Thomson Reuters Labs achieved AI/ML innovation at pace with AWS MLOps services

In this post, we show you how Thomson Reuters Labs (TR Labs) was able to develop an efficient, flexible, and powerful MLOps process by adopting a standardized MLOps framework that uses AWS SageMaker, SageMaker Experiments, SageMaker Model Registry, and SageMaker Pipelines. The goal being to accelerate how quickly teams can experiment and innovate using AI and machine learning (ML)—whether using natural language processing (NLP), generative AI, or other techniques. We discuss how this has helped decrease the time to market for fresh ideas and helped build a cost-efficient machine learning lifecycle.

Build a generative AI image description application with Anthropic’s Claude 3.5 Sonnet on Amazon Bedrock and AWS CDK

Build a generative AI image description application with Anthropic’s Claude 3.5 Sonnet on Amazon Bedrock and AWS CDK

In this post, we delve into the process of building and deploying a sample application capable of generating multilingual descriptions for multiple images with a Streamlit UI, AWS Lambda powered with the Amazon Bedrock SDK, and AWS AppSync driven by the open source Generative AI CDK Constructs.

Use LangChain with PySpark to process documents at massive scale with Amazon SageMaker Studio and Amazon EMR Serverless

Use LangChain with PySpark to process documents at massive scale with Amazon SageMaker Studio and Amazon EMR Serverless

In this post, we explore how to build a scalable and efficient Retrieval Augmented Generation (RAG) system using the new EMR Serverless integration, Spark’s distributed processing, and an Amazon OpenSearch Service vector database powered by the LangChain orchestration framework. This solution enables you to process massive volumes of textual data, generate relevant embeddings, and store them in a powerful vector database for seamless retrieval and generation.