AWS Machine Learning Blog
Category: Generative AI
Elevate workforce productivity through seamless personalization in Amazon Q Business
In this post, we explore how Amazon Q Business uses personalization to improve the relevance of responses and how you can align your use cases and end-user data to take full advantage of this capability
AWS recognized as a first-time Leader in the 2024 Gartner Magic Quadrant for Data Science and Machine Learning Platforms
AWS has been recognized as a Leader in the 2024 Gartner Magic Quadrant for Data Science and Machine Learning Platforms. The post highlights how AWS’s continued innovations in services like Amazon Bedrock and Amazon SageMaker have enabled organizations to unlock the transformative potential of generative AI.
Build a serverless voice-based contextual chatbot for people with disabilities using Amazon Bedrock
In this post, we presented how to create a fully serverless voice-based contextual chatbot using Amazon Bedrock with Anthropic Claude.
Import a question answering fine-tuned model into Amazon Bedrock as a custom model
In this post, we provide a step-by-step approach of fine-tuning a Mistral model using SageMaker and import it into Amazon Bedrock using the Custom Import Model feature.
Using task-specific models from AI21 Labs on AWS
In this blog post, we will show you how to leverage AI21 Labs’ Task-Specific Models (TSMs) on AWS to enhance your business operations. You will learn the steps to subscribe to AI21 Labs in the AWS Marketplace, set up a domain in Amazon SageMaker, and utilize AI21 TSMs via SageMaker JumpStart.
GenAI for Aerospace: Empowering the workforce with expert knowledge on Amazon Q and Amazon Bedrock
In this post we show how you can quickly launch generative AI-enabled expert chatbots, trained on your proprietary document sets, to empower your workforce across specific aerospace roles with Amazon Q and Amazon Bedrock.
Scalable training platform with Amazon SageMaker HyperPod for innovation: a video generation case study
In this post, we share an ML infrastructure architecture that uses SageMaker HyperPod to support research team innovation in video generation. We will discuss the advantages and pain points addressed by SageMaker HyperPod, provide a step-by-step setup guide, and demonstrate how to run a video generation algorithm on the cluster.
Build a multimodal social media content generator using Amazon Bedrock
In this post, we walk you through a step-by-step process to create a social media content generator app using vision, language, and embedding models (Anthropic’s Claude 3, Amazon Titan Image Generator, and Amazon Titan Multimodal Embeddings) through Amazon Bedrock API and Amazon OpenSearch Serverless.
Elevate RAG for numerical analysis using Amazon Bedrock Knowledge Bases
In this post, we discuss how Amazon Bedrock Knowledge Bases provides a powerful solution for numerical analysis on documents. You can deploy this solution in an AWS account and use it to analyze different types of documents.
Llama 3.2 models from Meta are now available in Amazon SageMaker JumpStart
In this post, we show how you can discover and deploy the Llama 3.2 11B Vision model using SageMaker JumpStart. We also share the supported instance types and context for all the Llama 3.2 models available in SageMaker JumpStart.