AWS Machine Learning Blog

Category: Amazon Machine Learning

Build cost-effective RAG applications with Binary Embeddings in Amazon Titan Text Embeddings V2, Amazon OpenSearch Serverless, and Amazon Bedrock Knowledge Bases

Today, we are happy to announce the availability of Binary Embeddings for Amazon Titan Text Embeddings V2 in Amazon Bedrock Knowledge Bases and Amazon OpenSearch Serverless. This post summarizes the benefits of this new binary vector support and gives you information on how you can get started.

Automate cloud security vulnerability assessment and alerting using Amazon Bedrock

This post demonstrates a proactive approach for security vulnerability assessment of your accounts and workloads, using Amazon GuardDuty, Amazon Bedrock, and other AWS serverless technologies. This approach aims to identify potential vulnerabilities proactively and provide your users with timely alerts and recommendations, avoiding reactive escalations and other damages.

DXC transforms data exploration for their oil and gas customers with LLM-powered tools

In this post, we show you how DXC and AWS collaborated to build an AI assistant using large language models (LLMs), enabling users to access and analyze different data types from a variety of data sources. The AI assistant is powered by an intelligent agent that routes user questions to specialized tools that are optimized for different data types such as text, tables, and domain-specific formats. It uses the LLM’s ability to understand natural language, write code, and reason about conversational context.

Text-to-SQL Solution Pipeline

How MSD uses Amazon Bedrock to translate natural language into SQL for complex healthcare databases

MSD, a leading pharmaceutical company, collaborates with AWS to implement a powerful text-to-SQL generative AI solution using Amazon Bedrock and Anthropic’s Claude 3.5 Sonnet model. This approach streamlines data extraction from complex healthcare databases like DE-SynPUF, enabling analysts to generate SQL queries from natural language questions. The solution addresses challenges such as coded columns, non-intuitive names, and ambiguous queries, significantly reducing query time and democratizing data access.

Architecture Diagram

Generate AWS Resilience Hub findings in natural language using Amazon Bedrock

This blog post discusses a solution that combines AWS Resilience Hub and Amazon Bedrock to generate architectural findings in natural language. By using the capabilities of Resilience Hub and Amazon Bedrock, you can share findings with C-suite executives, engineers, managers, and other personas within your corporation to provide better visibility over maintaining a resilient architecture.

Solution Architecture Diagram

Generate and evaluate images in Amazon Bedrock with Amazon Titan Image Generator G1 v2 and Anthropic Claude 3.5 Sonnet

In this post, we demonstrate how to interact with the Amazon Titan Image Generator G1 v2 model on Amazon Bedrock to generate an image. Then, we show you how to use Anthropic’s Claude 3.5 Sonnet on Amazon Bedrock to describe it, evaluate it with a score from 1–10, explain the reason behind the given score, and suggest improvements to the image.

How InsuranceDekho transformed insurance agent interactions using Amazon Bedrock and generative AI

In this post, we explain how InsuranceDekho harnessed the power of generative AI using Amazon Bedrock and Anthropic’s Claude to provide responses to customer queries on policy coverages, exclusions, and more. This let our customer care agents and POSPs confidently help our customers understand the policies without reaching out to insurance subject matter experts (SMEs) or memorizing complex plans while providing sales and after-sales services. The use of this solution has improved sales, cross-selling, and overall customer service experience.

From RAG to fabric: Lessons learned from building real-world RAGs at GenAIIC – Part 2

This post focuses on doing RAG on heterogeneous data formats. We first introduce routers, and how they can help managing diverse data sources. We then give tips on how to handle tabular data and will conclude with multimodal RAG, focusing specifically on solutions that handle both text and image data.

How GoDaddy built Lighthouse, an interaction analytics solution to generate insights on support interactions using Amazon Bedrock

In this post, we discuss how GoDaddy’s Care & Services team, in close collaboration with the  AWS GenAI Labs team, built Lighthouse—a generative AI solution powered by Amazon Bedrock. Amazon Bedrock is a fully managed service that makes foundation models (FMs) from leading AI startups and Amazon available through an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case. With Amazon Bedrock, GoDaddy’s Lighthouse mines insights from customer care interactions using crafted prompts to identify top call drivers and reduce friction points in customers’ product and website experiences, leading to improved customer experience.