AWS HPC Blog

Using AWS Batch Console Support for Step Functions Workflows

Last year, we published the Genomics Secondary Analysis Using AWS Step Functions and AWS Batch solution as a companion solution to the Genomics Data Transfer, Analytics, and Machine Learning Using AWS Services whitepaper. Since then, many customers have used the secondary analysis solution to automate their bioinformatics pipelines in AWS. A common pain point expressed […]

The Convergent Evolution of Grid Computing in Financial Services

The Financial Services industry makes significant use of high performance computing (HPC) but it tends to be in the form of loosely coupled, embarrassingly parallel workloads to support risk modelling. The infrastructure tends to scale out to meet ever increasing demand as the analyses look at more and finer grained data. At AWS we’ve helped many customers tackle scaling challenges are noticing some common themes. In this post we describe how HPC teams are thinking about how they deliver compute capacity today, and highlight how we see the solutions converging for the future.

Putting bitrates into perspective

Recently, we talked about the advances NICE DCV has made to push pixels from cloud-hosted desktops or applications over the internet even more efficiently than before. Since we published that post on this blog channel, we’ve been asked by several customers whether all this efficient pixel-pushing could lead to outbound data charges moving up on their AWS bill. We decided to try it on your behalf, and share the details with you in this post. The bottom line? The charges are unlikely to be significant unless you’re doing intensive streaming (such as gaming) and other cost optimizations (like AWS Instance Savings Plans) that will have more impact on your bill.

Figure 4: Relative price-to-performance ratio ($USD/ns) while scaling the simulation across single and multi-GPU instances and comparing to CPU (EFA enabled) performance-to-price (baseline CPU perf).

Running GROMACS on GPU instances: multi-node price-performance

This three-part series of posts cover the price performance characteristics of running GROMACS on Amazon Elastic Compute Cloud (Amazon EC2) GPU instances. Part 1 covered some background no GROMACS and how it utilizes GPUs for acceleration. Part 2 covered the price performance of GROMACS on a particular GPU instance family running on a single instance. […]

Figure 4: Performance scaling as a function of CPU core count increase while number of GPU's remain constant.

Running GROMACS on GPU instances: single-node price-performance

This three-part series of posts cover the price performance characteristics of running GROMACS on Amazon Elastic Compute Cloud (Amazon EC2) GPU instances. Part 1 covered some background no GROMACS and how it utilizes GPUs for acceleration. This post (Part 2) covers the price performance of GROMACS on a particular GPU instance family running on a […]

Figure 2: Work distribution across CPU and GPU for a single simulation timestep

Running GROMACS on GPU instances

Comparing the performance of real applications across different Amazon Elastic Compute Cloud (Amazon EC2) instance types is the best way we’ve found for finding optimal configurations for HPC applications here at AWS. Previously, we wrote about price-performance optimizations for GROMACS that showed how the GROMACS molecular dynamics simulation runs on single instances, and how it […]

AWS Batch Dos and Don’ts: Best Practices in a Nutshell

AWS Batch is a service that enables scientists and engineers to run computational workloads at virtually any scale without requiring them to manage a complex architecture. In this blog post, we share a set of best practices and practical guidance devised from our experience working with customers in running and optimizing their computational workloads. The readers will learn how to optimize their costs with Amazon EC2 Spot on AWS Batch, how to troubleshoot their architecture should an issue arise and how to tune their architecture and containers layout to run at scale.

Running the Harmonie numerical weather prediction model on AWS

The Danish Meteorological Institute (DMI) is responsible for running atmospheric, climate and ocean models covering the kingdom of Denmark. We worked together with the DMI to port and run a full numerical weather prediction (NWP) cycling dataflow with the Harmonie Numerical Weather Prediction (NWP) model to AWS. You can find a report of the porting and operational experience in the ACCORD community newsletter. In this blog post, we expand on that report to present the initial timing results from running the forecast component of Harmonie model on AWS. We also present these as-is timing results together with as-is timings attained on the supercomputing systems based on Cray XC40 and Intel Xeon based Cray XC50.

Cost-optimization on Spot Instances using checkpoint for Ansys LS-DYNA

A major portion of the costs incurred for running Finite Element Analyses (FEA) workloads on AWS comes from the usage of Amazon EC2 instances. Amazon EC2 Spot Instances offer a cost-effective architectural choice, allowing you to take advantage of unused EC2 capacity for up to a 90% discount compared to On-Demand Instance prices. In this post, we describe how you 0can run fault-tolerant FEA workloads on Spot Instances using Ansys LS-DYNA’s checkpointing and auto-restart utility.

Quantum Chemistry Calculation with FHI-aims code on AWS

This article was contributed by Dr. Fabio Baruffa, Sr. HPC and QC Solutions Architect at AWS, and Dr. Jesús Pérez Ríos, Group Leader at the Fritz Haber Institute, Max-Planck Society.   Introduction Quantum chemistry – the study of the inherently quantum interactions between atoms forming part of molecules – is a cornerstone of modern chemistry. […]