AWS HPC Blog

Introducing AWS ParallelCluster multiuser support via Active Directory

Today we’re announcing the release of AWS ParallelCluster 3.1 which now supports multiuser authentication based on Active Directory (AD). Starting with v3.1.1 clusters can be configured to use an AD domain managed via one of the AWS Directory Service options like Simple AD or AWS Managed Microsoft AD (MSAD). This blog post describes the new feature, and gives an example of a configuration block for ParallelCluster 3 configuration files.

How to Arm a world-leading forecast model with AWS Graviton and Lambda

The Met Office is the UK’s National Meteorological Service, providing 24×7 world-renowned scientific excellence in weather, climate and environmental forecasts and severe weather warnings for the protection of life and property. They provide forecasts and guidance for the public, to our government and defence colleagues as well as the private sector. As an example, if you’ve been on a plane over Europe, Middle East, or Africa; that plane took off because the Met Office (as one of two World Aviation Forecast Centres) provided a forecast. This article explains one of the ways they use AWS to collect these observations, which has freed them to focus more on top quality delivery for their customers.

Using Spot Instances with AWS ParallelCluster and Amazon FSx for Lustre

Processing large amounts of complex data often requires leveraging a mix of different Amazon EC2 instance types. These types of computations also benefit from shared, high performance, scalable storage like Amazon FSx for Lustre. A way to save costs on your analysis is to use Amazon EC2 Spot Instances, which can help to reduce EC2 costs up to 90% compared to On-Demand Instance pricing. This post will guide you in the creation of a fault-tolerant cluster using AWS ParallelCluster. We will explain how to configure ParallelCluster to automatically unmount the Amazon FSx for Lustre filesystem and resubmit the interrupted jobs back into the queue in the case of Spot interruption events.

Running Windows HPC Workloads using HPC Pack in AWS

This blog post shows you how to deploy an HPC cluster for Windows workloads. We have provided an AWS CloudFormation template that automates the creation process to deploy an HPC Pack 2019 Windows cluster. This will help you get started quickly to run Windows-based HPC workloads, while leveraging highly scalable, resilient, and secure AWS infrastructure. As an example, we show how to run a sample parametric sweep for EnergyPlus, an open source energy simulation tool maintained by the U.S. Department of Energy’s Building Technology Office.

Accelerating drug discovery with Amazon EC2 Spot Instances

We have been working with a team of researchers at the Max Planck Institute, helping them adopt the AWS cloud for drug research applications in the pharmaceutical industry. In this post, we’ll focus on how the team at Max Planck obtained thousands of EC2 Spot Instances spread across multiple AWS Regions for running their compute intensive simulations in a cost-effective manner, and how their solution will be enhanced further using the new Spot Placement Score API.

Introducing AWS HPC Connector for NICE EnginFrame

Today we’re introducing AWS HPC Connector, a new feature in NICE EnginFrame that allows customers to leverage managed HPC resources on AWS. With this release, EnginFrame provides a unified interface for administrators to make hybrid HPC resources available to their users both on-premises and within AWS. In this post, we’ll provide some context around EnginFrame’s typical use cases, and show how you can use AWS HPC Connector to stand up HPC compute resources on AWS.

Figure 2: CDI transmits the frame buffer using EFA. SRD is a multipath, self-healing transport. This creates a kernel bypass method that effectively enables a memory copy from one framebuffer to another.

How we enabled uncompressed live video with CDI over EFA

We’re going to take you into the world of broadcast video, and explain how it led to us announcing today the general availability of EFA on smaller instance sizes. For a range of applications, this is going to save customers a lot of money because they no longer need to use the biggest instances in each instance family to get HPC-style network performance. But the story of how we got there involves our Elastic Fabric Adapter (EFA), some difficult problems presented to us by customers in the entertainment industry, and an invention called the Cloud Digital Interface (CDI). And it started not very far from Hollywood.