AWS HPC Blog

Building a 4x faster and scalable algorithm using AWS Batch for Amazon Logistics

Building a 4x faster and more scalable algorithm using AWS Batch for Amazon Logistics

In this post, AWS Professional Services highlights how they helped data scientists from Amazon Logistics rearchitect their algorithm for improving the efficiency of their supply-chain by making better planning decisions. Leveraging best practices for deploying scalable HPC applications on AWS, the teams saw a 4X improvement in run time.

Running accurate, comprehensive, and efficient genomics workflows on AWS using Illumina DRAGEN v4.0

In this blog, we provide a walkthrough of running Illumina DRAGEN v4.0 genomic analysis pipelines on AWS, showing accuracy and efficiency, copy number analysis, structural variants, SMN callers, repeat expansion detection, and pharmacogenomics insights for complex genes. We also highlight some benchmarking results for runtime, cost, and concordance from the Illumina DRAGEN DNA sequencing pipeline.

Massively-scaling quantum chemistry to support a circular economy

Massively-scaling quantum chemistry to support a circular economy

As a part of AWS’s “Digital Technologies for a Circular Economy” initiative, we joined forces with Accenture, Intel and Good Chemistry to massively scale quantum chemistry simulations. This is the first and most complex step to discovering new pathways for PFAS destruction for a cleaner world.

Cost-effective and accurate genomics analysis with Sentieon on AWS

In this blog post, we benchmark the performance of Sentieon’s DNAseq and DNAscope pipelines using publicly available genomics datasets on AWS. You will gain an understanding of the runtime, cost, and accuracy performance of these germline variant calling pipelines across a wide range of Amazon EC2 instances.

Optimizing your AWS Batch architecture for scale with observability dashboards

AWS Batch customers often ask for guidance to optimize their architectures and make their workload to scale rapidly. Here we describe an observability solution that provides insights into your AWS Batch architectures and allows you to optimize them for scale and quickly identify potential throughput bottlenecks for jobs and instances.