AWS HPC Blog
Category: AWS ParallelCluster
Launch self-supervised training jobs in the cloud with AWS ParallelCluster
In this post we describe the process to launch large, self-supervised training jobs using AWS ParallelCluster and Facebook’s Vision Self-Supervised Learning (VISSL) library.
Support for Instance Allocation Flexibility in AWS ParallelCluster 3.3
AWS ParallelCluster 3.3.0 now lets you define a list of Amazon EC2 instance types for resourcing a compute queue. This gives you more flexibility to optimize the cost and total time to solution of your HPC jobs, especially when capacity is limited or you’re using Spot Instances.
Minimize HPC compute costs with all-or-nothing instance launching
In this post, we highlight a little-known configuration option for Slurm on @awscloud ParallelCluster that can reduce costs and increase your iteration speed by preventing idle batch instances from launching when EC2 capacity is limited.
Easing your migration from SGE to Slurm in AWS ParallelCluster 3
This post will help you understand the tools available to ease the stress of migrating your cluster (and your users) from SGE to Slurm, which is necessary since the HPC community is no longer supporting SGE’s open-source codebase.
Simulating 44-Qubit quantum circuits using AWS ParallelCluster
A key part of the development of quantum hardware and quantum algorithms is simulation using existing classical architectures and HPC techniques. In this blog post, we describe how to perform large-scale quantum circuits simulations using AWS ParallelCluster with QuEST, the Quantum Exact Simulation Toolkit. We demonstrate a simple and rapid deployment of computational resources up to 4,096 compute instances to simulate random quantum circuits with up to 44 qubits. We were able to allocate as many as 4096 EC2 instances of c5.18xlarge to simulate a non-trivial 44 qubit quantum circuit in fewer than 3.5 hours.
Running large-scale CFD fire simulations on AWS for Amazon.com
In this blog post, we discuss the AWS solution that Amazon’s construction division used to conduct large-scale CFD fire simulations as part of their Fire Strategy solutions to demonstrate safety and fire mitigation strategies. We outline the five key steps taken that resulted in simulation times that were 15-20x faster than previous on-premises architectures, reducing the time to complete from up to twenty-one days to less than one day.
Expanded filesystems support in AWS ParallelCluster 3.2
AWS ParallelCluster version 3.2 introduces support for two new Amazon FSx filesystem types (NetApp ONTAP and OpenZFS). It also lifts the limit on the number of filesystem mounts you can have on your cluster. We’ll show you how, and help you with the details for getting this going right away.
Slurm-based memory-aware scheduling in AWS ParallelCluster 3.2
AWS ParallelCluster version 3.2 now supports memory-aware scheduling in Slurm to give you control over the placement of jobs with specific memory requirements. In this blog post, we’ll show you how it works, and explain why this will be really useful to people with memory-hungry workloads.
How Thermo Fisher Scientific Accelerated Cryo-EM using AWS ParallelCluster
In this blog post, we’ll walk you through the process of building a successful Cryo-EM benchmarking pilot using AWS ParallelCluster, Amazon FSx for Lustre, and cryoSPARC (from Structura Biotechnology) and explain some of our design decisions along the way.
Running cost-effective GROMACS simulations using Amazon EC2 Spot Instances with AWS ParallelCluster
In this blog post, we cover how to run GROMACS – a popular open source designed for simulations of proteins, lipids, and nucleic acids – cost effectively by leveraging EC2 Spot Instances within AWS ParallelCluster. We also show how to checkpoint GROMACS to recover gracefully from possible Spot Instance interruptions.