AWS Big Data Blog
Use Snowflake with Amazon MWAA to orchestrate data pipelines
This blog post is co-written with James Sun from Snowflake. Customers rely on data from different sources such as mobile applications, clickstream events from websites, historical data, and more to deduce meaningful patterns to optimize their products, services, and processes. With a data pipeline, which is a set of tasks used to automate the movement […]
Spark on AWS Lambda: An Apache Spark runtime for AWS Lambda
Spark on AWS Lambda (SoAL) is a framework that runs Apache Spark workloads on AWS Lambda. It’s designed for both batch and event-based workloads, handling data payload sizes from 10 KB to 400 MB. This post highlights the SoAL architecture, provides infrastructure as code (IaC), offers step-by-step instructions for setting up the SoAL framework in your AWS account, and outlines SoAL architectural patterns for enterprises.
Unlock scalable analytics with AWS Glue and Google BigQuery
Data integration is the foundation of robust data analytics. It encompasses the discovery, preparation, and composition of data from diverse sources. In the modern data landscape, accessing, integrating, and transforming data from diverse sources is a vital process for data-driven decision-making. AWS Glue, a serverless data integration and extract, transform, and load (ETL) service, has […]
Amazon Redshift: Lower price, higher performance
Like virtually all customers, you want to spend as little as possible while getting the best possible performance. This means you need to pay attention to price-performance. With Amazon Redshift, you can have your cake and eat it too! Amazon Redshift delivers up to 4.9 times lower cost per user and up to 7.9 times […]
An automated approach to perform an in-place engine upgrade in Amazon OpenSearch Service
Software upgrades bring new features and better performance, and keep you current with the software provider. However, upgrades for software services can be difficult to complete successfully, especially when you can’t tolerate downtime and when the new version’s APIs introduce breaking changes and deprecation that you must remediate. This post shows you how to upgrade […]
Create, train, and deploy Amazon Redshift ML model integrating features from Amazon SageMaker Feature Store
Amazon Redshift is a fast, petabyte-scale, cloud data warehouse that tens of thousands of customers rely on to power their analytics workloads. Data analysts and database developers want to use this data to train machine learning (ML) models, which can then be used to generate insights on new data for use cases such as forecasting […]
Enable cost-efficient operational analytics with Amazon OpenSearch Ingestion
As the scale and complexity of microservices and distributed applications continues to expand, customers are seeking guidance for building cost-efficient infrastructure supporting operational analytics use cases. Operational analytics is a popular use case with Amazon OpenSearch Service. A few of the defining characteristics of these use cases are ingesting a high volume of time series […]
Unstructured data management and governance using AWS AI/ML and analytics services
In this post, we discuss how AWS can help you successfully address the challenges of extracting insights from unstructured data. We discuss various design patterns and architectures for extracting and cataloging valuable insights from unstructured data using AWS. Additionally, we show how to use AWS AI/ML services for analyzing unstructured data.
Simplify Amazon Redshift monitoring using the new unified SYS views
Amazon Redshift is a fully managed, petabyte-scale data warehouse service in the cloud, providing up to five times better price-performance than any other cloud data warehouse, with performance innovation out of the box at no additional cost to you. Tens of thousands of customers use Amazon Redshift to process exabytes of data every day to […]
Build multi-layer maps in Amazon OpenSearch Service
With the release of Amazon OpenSearch Service 2.5, you can create maps with multiple layers to visualize your geographical data. You can build each layer from a different index pattern to separate data sources. Organizing the map in layers makes it more straightforward to visualize, view, and analyze geographical data. The layering also helps fetch […]