AWS Big Data Blog

Category: Learning Levels

Solution Architecture

Publish and enrich real-time financial data feeds using Amazon MSK and Amazon Managed Service for Apache Flink

In this post, we demonstrate how you can publish an enriched real-time data feed on AWS using Amazon Managed Streaming for Kafka (Amazon MSK) and Amazon Managed Service for Apache Flink. You can apply this architecture pattern to various use cases within the capital markets industry; we discuss some of those use cases in this post.

A box indicating Amazon Redshift in the center of the image with boxes from right to left for Amazon RDS MySQL and PostgreSQL, Amazon Aurora MySQL and PostreSQL, Amazon EMR, Amazon Glue, Amazon S3 bucket, Amazon Managed Streaming for Apache Kafka and Amazon Kinesis. Each box has an arrow pointing to Amazon Redshift. Each arrow has the following labels: Amazon RDS & Amazon Aurora: zero-ETL and federated queries; AWS Glue and Amazon EMR: spark connector; Amazon S3 bucket: COPY command; Amazon Managed Streaming for Apache Kafka and Amazon Kinesis: redshift streaming. Amazon Data Firehose has an arrow pointing to Amazon S3 bucket indicating the data flow direction.

Amazon Redshift data ingestion options

Amazon Redshift, a warehousing service, offers a variety of options for ingesting data from diverse sources into its high-performance, scalable environment. Whether your data resides in operational databases, data lakes, on-premises systems, Amazon Elastic Compute Cloud (Amazon EC2), or other AWS services, Amazon Redshift provides multiple ingestion methods to meet your specific needs. The currently […]

Solution Overview

Use the AWS CDK with the Data Solutions Framework to provision and manage Amazon Redshift Serverless

In this post, we demonstrate how to use the AWS CDK and DSF to create a multi-data warehouse platform based on Amazon Redshift Serverless. DSF simplifies the provisioning of Redshift Serverless, initialization and cataloging of data, and data sharing between different data warehouse deployments.

Accelerate data integration with Salesforce and AWS using AWS Glue

To meet the demands of diverse data integration use cases, AWS Glue now supports SaaS connectivity for Salesforce. This enables users to quickly preview and transfer their customer relationship management (CRM) data, fetch the schema dynamically on request, and query the data. This post explores the new Salesforce connector for AWS Glue and demonstrates how to build a modern extract, transform, and load (ETL) pipeline with AWS Glue ETL scripts.

Integrate Tableau and Microsoft Entra ID with Amazon Redshift using AWS IAM Identity Center

This blog post provides a step-by-step guide to integrating IAM Identity Center with Microsoft Entra ID as the IdP and configuring Amazon Redshift as an AWS managed application. Additionally, you’ll learn how to set up the Amazon Redshift driver in Tableau, enabling SSO directly within Tableau Desktop.

Attribute Amazon EMR on EC2 costs to your end-users

In this post, we share a chargeback model that you can use to track and allocate the costs of Spark workloads running on Amazon EMR on EC2 clusters. We describe an approach that assigns Amazon EMR costs to different jobs, teams, or lines of business. You can use this feature to distribute costs across various business units. This can assist you in monitoring the return on investment for your Spark-based workloads.

High-level architecture overview

Copy and mask PII between Amazon RDS databases using visual ETL jobs in AWS Glue Studio

In this post, I’ll walk you through how to copy data from one Amazon Relational Database Service (Amazon RDS) for PostgreSQL database to another, while scrubbing PII along the way using AWS Glue. You will learn how to prepare a multi-account environment to access the databases from AWS Glue, and how to model an ETL data flow that automatically masks PII as part of the transfer process, so that no sensitive information will be copied to the target database in its original form.

How Kaplan, Inc. implemented modern data pipelines using Amazon MWAA and Amazon AppFlow with Amazon Redshift as a data warehouse

Kaplan, Inc. provides individuals, educational institutions, and businesses with a broad array of services, supporting our students and partners to meet their diverse and evolving needs throughout their educational and professional journeys. In this post, we discuss how the Kaplan data engineering team implemented data integration from the Salesforce application to Amazon Redshift. The solution uses Amazon Simple Storage Service as a data lake, Amazon Redshift as a data warehouse, Amazon Managed Workflows for Apache Airflow (Amazon MWAA) as an orchestrator, and Tableau as the presentation layer.

Optimize cost and performance for Amazon MWAA

Amazon Managed Workflows for Apache Airflow (Amazon MWAA) is a managed service for Apache Airflow that allows you to orchestrate data pipelines and workflows at scale. With Amazon MWAA, you can design Directed Acyclic Graphs (DAGs) that describe your workflows without managing the operational burden of scaling the infrastructure. In this post, we provide guidance […]

Embed Amazon OpenSearch Service dashboards in your application

Customers across diverse industries rely on Amazon OpenSearch Service for interactive log analytics, real-time application monitoring, website search, vector database, deriving meaningful insights from data, and visualizing these insights using OpenSearch Dashboards. Additionally, customers often seek out capabilities that enable effortless sharing of visual dashboards and seamless embedding of these dashboards within their applications, further […]