AWS Big Data Blog
Category: Compute
Run high-availability long-running clusters with Amazon EMR instance fleets
In this post, we demonstrate how to launch a high availability instance fleet cluster using the newly redesigned Amazon EMR console, as well as using an AWS CloudFormation template. We also go over the basic concepts of Hadoop high availability, EMR instance fleets, the benefits and trade-offs of high availability, and best practices for running resilient EMR clusters.
Integrate custom applications with AWS Lake Formation – Part 1
In this two-part series, we show how to integrate custom applications or data processing engines with Lake Formation using the third-party services integration feature. In this post, we dive deep into the required Lake Formation and AWS Glue APIs. We walk through the steps to enforce Lake Formation policies within custom data applications. As an example, we present a sample Lake Formation integrated application implemented using AWS Lambda.
Integrate custom applications with AWS Lake Formation – Part 2
In this two-part series, we show how to integrate custom applications or data processing engines with Lake Formation using the third-party services integration feature. In this post, we explore how to deploy a fully functional web client application, built with JavaScript/React through AWS Amplify (Gen 1), that uses the same Lambda function as the backend. The provisioned web application provides a user-friendly and intuitive way to view the Lake Formation policies that have been enforced.
Analyze Amazon EMR on Amazon EC2 cluster usage with Amazon Athena and Amazon QuickSight
In this post, we guide you through deploying a comprehensive solution in your Amazon Web Services (AWS) environment to analyze Amazon EMR on EC2 cluster usage. By using this solution, you will gain a deep understanding of resource consumption and associated costs of individual applications running on your EMR cluster.
Enrich your serverless data lake with Amazon Bedrock
Organizations are collecting and storing vast amounts of structured and unstructured data like reports, whitepapers, and research documents. By consolidating this information, analysts can discover and integrate data from across the organization, creating valuable data products based on a unified dataset. This post shows how to integrate Amazon Bedrock with the AWS Serverless Data Analytics Pipeline architecture using Amazon EventBridge, AWS Step Functions, and AWS Lambda to automate a wide range of data enrichment tasks in a cost-effective and scalable manner.
Use Batch Processing Gateway to automate job management in multi-cluster Amazon EMR on EKS environments
AWS customers often process petabytes of data using Amazon EMR on EKS. In enterprise environments with diverse workloads or varying operational requirements, customers frequently choose a multi-cluster setup due to the following advantages: Better resiliency and no single point of failure – If one cluster fails, other clusters can continue processing critical workloads, maintaining business […]
How ZS built a clinical knowledge repository for semantic search using Amazon OpenSearch Service and Amazon Neptune
In this blog post, we will highlight how ZS Associates used multiple AWS services to build a highly scalable, highly performant, clinical document search platform. This platform is an advanced information retrieval system engineered to assist healthcare professionals and researchers in navigating vast repositories of medical documents, medical literature, research articles, clinical guidelines, protocol documents, […]
Build a serverless data quality pipeline using Deequ on AWS Lambda
Poor data quality can lead to a variety of problems, including pipeline failures, incorrect reporting, and poor business decisions. For example, if data ingested from one of the systems contains a high number of duplicates, it can result in skewed data in the reporting system. To prevent such issues, data quality checks are integrated into […]
Stream data to Amazon S3 for real-time analytics using the Oracle GoldenGate S3 handler
Modern business applications rely on timely and accurate data with increasing demand for real-time analytics. There is a growing need for efficient and scalable data storage solutions. Data at times is stored in different datasets and needs to be consolidated before meaningful and complete insights can be drawn from the datasets. This is where replication […]
Monitoring Apache Iceberg metadata layer using AWS Lambda, AWS Glue, and AWS CloudWatch
In the era of big data, data lakes have emerged as a cornerstone for storing vast amounts of raw data in its native format. They support structured, semi-structured, and unstructured data, offering a flexible and scalable environment for data ingestion from multiple sources. Data lakes provide a unified repository for organizations to store and use […]