AWS Big Data Blog

Category: Amazon Athena

Now Available: Updated guidance on the Data Analytics Lens for AWS Well-Architected Framework

Nearly all businesses today require some form of data analytics processing, from auditing user access to generating sales reports. For all your analytics needs, the Data Analytics Lens for AWS Well-Architected Framework provides prescriptive guidance to help you assess your workloads and identify best practices aligned to the AWS Well-Architected Pillars: Operational Excellence, Security, Reliability, […]

Configure single sign-on authentication for Amazon Athena with Azure AD integrated to on-premises AD

Amazon Athena is an interactive query service that makes it easier to analyze data directly in Amazon Simple Storage Service (Amazon S3) using standard SQL. Cloud operation teams can use AWS Identity and Access Management (IAM) federation to centrally manage access to Athena. This simplifies administration by allowing a governing team to control user access […]

Extract, prepare, and analyze Salesforce.com data using Amazon AppFlow, AWS Glue DataBrew, and Amazon Athena

As organizations embark on their data modernization journey, big data analytics and machine learning (ML) use cases are becoming even more integral parts of business. The ease for data preparation and seamless integration with third-party data sources is of paramount importance in order to gain insights quickly and make critical business decisions faster. AWS Glue […]

Build and orchestrate ETL pipelines using Amazon Athena and AWS Step Functions

Extract, transform, and load (ETL) is the process of reading source data, applying transformation rules to this data, and loading it into the target structures. ETL is performed for various reasons. Sometimes ETL helps align source data to target data structures, whereas other times ETL is done to derive business value by cleansing, standardizing, combining, […]

athena-quicksight-cross-account-architecture

Use Amazon Athena and Amazon QuickSight in a cross-account environment

This blog post was last reviewed and updated May, 2022 to include AWS Lake Formation resource sharing model. Many AWS customers use a multi-account strategy to host applications for different departments within the same company. However, you might deploy services like Amazon QuickSight using a single-account approach, which raises challenges when you need to use […]

Create a custom Amazon S3 Storage Lens metrics dashboard using Amazon QuickSight

Companies use Amazon Simple Storage Service (Amazon S3) for its flexibility, durability, scalability, and ability to perform many things besides storing data. This has led to an exponential rise in the usage of S3 buckets across numerous AWS Regions, across tens or even hundreds of AWS accounts. To optimize costs and analyze security posture, Amazon […]

How MEDHOST’s cardiac risk prediction successfully leveraged AWS analytic services

February 9, 2024: Amazon Kinesis Data Firehose has been renamed to Amazon Data Firehose. Read the AWS What’s New post to learn more. MEDHOST has been providing products and services to healthcare facilities of all types and sizes for over 35 years. Today, more than 1,000 healthcare facilities are partnering with MEDHOST and enhancing their […]

How Comcast uses AWS to rapidly store and analyze large-scale telemetry data

This blog post is co-written by Russell Harlin from Comcast Corporation. Comcast Corporation creates incredible technology and entertainment that connects millions of people to the moments and experiences that matter most. At the core of this is Comcast’s high-speed data network, providing tens of millions of customers across the country with reliable internet connectivity. This […]

Use ML predictions over Amazon DynamoDB data with Amazon Athena ML

Today’s modern applications use multiple purpose-built database engines, including relational, key-value, document, and in-memory databases. This purpose-built approach improves the way applications use data by providing better performance and reducing cost. However, the approach raises some challenges for data teams that need to provide a holistic view on top of these database engines, and especially […]