AWS Big Data Blog

Build a multilingual dashboard with Amazon Athena and Amazon QuickSight

Amazon QuickSight is a serverless business intelligence (BI) service used by organizations of any size to make better data-driven decisions. QuickSight dashboards can also be embedded into SaaS apps and web portals to provide interactive dashboards, natural language query or data analysis capabilities to app users seamlessly. The QuickSight Demo Central contains many dashboards, feature showcase and tips and tricks that you can use; in the QuickSight Embedded Analytics Developer Portal you can find details on how to embed dashboards in your applications.

The QuickSight user interface currently supports 15 languages that you can choose on a per-user basis. The language selected for the user interface localizes all text generated by QuickSight with respect to UI components and isn’t applied to the data displayed in the dashboards.

This post describes how to create multilingual dashboards at the data level by creating new columns that contain the translated text and providing a language selection parameter and associated control to display data in the selected language in a QuickSight dashboard. You can create new columns with the translated text in several ways; in this post we create new columns using Amazon Athena user-defined functions implemented in the GitHub project sample Amazon Athena UDFs for text translation and analytics using Amazon Comprehend and Amazon Translate. This approach makes it easy to automatically create columns with translated text using neural machine translation provided by Amazon Translate.

Solution overview

The following diagram illustrates the architecture of this solution.

Architecture

For this post, we use the sample SaaS-Sales.csv dataset and follow these steps:

  1. Copy the dataset to a bucket in Amazon Simple Storage Service (Amazon S3).
  2. Use Athena to define a database and table to read the CSV file.
  3. Create a new table in Parquet format with the columns with the translated text.
  4. Create a new dataset in QuickSight.
  5. Create the parameter and control to select the language.
  6. Create dynamic multilingual calculated fields.
  7. Create an analysis with calculated multilingual calculated fields.
  8. Publish the multilingual dashboard.
  9. Create parametric headers and titles for visuals for use in an embedded dashboard.

An alternative approach might be to directly upload the CSV dataset to QuickSight and create the new columns with translated text as QuickSight calculated fields, for example using the ifelse() conditional function to directly assign the translated values.

Prerequisites

To follow the steps in this post, you need to have an AWS account with an active QuickSight Standard Edition or Enterprise Edition subscription.

Copy the dataset to a bucket in Amazon S3

Use the AWS Command Line Interface (AWS CLI) to create the S3 bucket qs-ml-blog-data and copy the dataset under the prefix saas-sales in your AWS account. You must follow the bucket naming rules to create your bucket. See the following code:

$ MY_BUCKET=qs-ml-blog-data
$ PREFIX=saas-sales

$ aws s3 mb s3://${MY_BUCKET}/

$ aws s3 cp \
    "s3://aws-blogs-artifacts-public/artifacts/BDB-2138/SaaS-Sales.csv" \
    "s3://${MY_BUCKET}/${PREFIX}/SaaS-Sales.csv" 

Define a database and table to read the CSV file

Use the Athena query editor to create the database qs_ml_blog_db:

CREATE DATABASE IF NOT EXISTS qs_ml_blog_db;

Then create the new table qs_ml_blog_db.saas_sales:

CREATE EXTERNAL TABLE IF NOT EXISTS qs_ml_blog_db.saas_sales (
  row_id bigint, 
  order_id string, 
  order_date string, 
  date_key bigint, 
  contact_name string, 
  country_en string, 
  city_en string, 
  region string, 
  subregion string, 
  customer string, 
  customer_id bigint, 
  industry_en string, 
  segment string, 
  product string, 
  license string, 
  sales double, 
  quantity bigint, 
  discount double, 
  profit double)
ROW FORMAT DELIMITED 
  FIELDS TERMINATED BY ',' 
STORED AS INPUTFORMAT 
  'org.apache.hadoop.mapred.TextInputFormat' 
OUTPUTFORMAT 
  'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
  's3://<MY_BUCKET>/saas-sales/'
TBLPROPERTIES (
  'areColumnsQuoted'='false', 
  'classification'='csv', 
  'columnsOrdered'='true', 
  'compressionType'='none', 
  'delimiter'=',', 
  'skip.header.line.count'='1', 
  'typeOfData'='file')

Create a new table in Parquet format with the columns with the translated text

We want to translate the columns country_en, city_en, and industry_en to German, Spanish, and Italian. To do this in a scalable and flexible way, we use the GitHub project sample Amazon Athena UDFs for text translation and analytics using Amazon Comprehend and Amazon Translate.

After you set up the user-defined functions following the instructions in the GitHub repo, run the following SQL query in Athena to create the new table qs_ml_blog_db.saas_sales_ml with the translated columns using the translate_text user-defined function and some other minor changes:

CREATE TABLE qs_ml_blog_db.saas_sales_ml WITH (
    format = 'PARQUET',
    parquet_compression = 'SNAPPY',
    external_location = 's3://<MY_BUCKET>/saas-sales-ml/'
) AS 
USING EXTERNAL FUNCTION translate_text(text_col VARCHAR, sourcelang VARCHAR, targetlang VARCHAR, terminologyname VARCHAR) RETURNS VARCHAR LAMBDA 'textanalytics-udf'
SELECT 
row_id,
order_id,
date_parse("order_date",'%m/%d/%Y') as order_date,
date_key,
contact_name,
country_en,
translate_text(country_en, 'en', 'de', NULL) as country_de,
translate_text(country_en, 'en', 'es', NULL) as country_es,
translate_text(country_en, 'en', 'it', NULL) as country_it,
city_en,
translate_text(city_en, 'en', 'de', NULL) as city_de,
translate_text(city_en, 'en', 'es', NULL) as city_es,
translate_text(city_en, 'en', 'it', NULL) as city_it,
region,
subregion,
customer,
customer_id,
industry_en,
translate_text(industry_en, 'en', 'de', NULL) as industry_de,
translate_text(industry_en, 'en', 'es', NULL) as industry_es,
translate_text(industry_en, 'en', 'it', NULL) as industry_it,
segment,
product,
license,
sales,
quantity,
discount,
profit
FROM qs_ml_blog_db.saas_sales
;

Run three simple queries, one per column, to check the generation of the new columns with the translation was successful. We include a screenshot after each query showing its results.

SELECT 
distinct(country_en),
country_de,
country_es,
country_it
FROM qs_ml_blog_db.saas_sales_ml 
ORDER BY country_en
limit 10
;

Original and translated values for column Country

SELECT 
distinct(city_en),
city_de,
city_es,
city_it
FROM qs_ml_blog_db.saas_sales_ml 
ORDER BY city_en
limit 10
;

Original and translated values for column City

SELECT 
distinct(industry_en),
industry_de,
industry_es,
industry_it
FROM qs_ml_blog_db.saas_sales_ml 
ORDER BY industry_en
limit 10
;

Original and translated values for column Industry

Now you can use the new table saas_sales_ml as input to create a dataset in QuickSight.

Create a dataset in QuickSight

To create your dataset in QuickSight, complete the following steps:

  1. On the QuickSight console, choose Datasets in the navigation pane.
  2. Choose Create a dataset.
  3. Choose Athena.
  4. For Data source name¸ enter athena_primary.
  5. For Athena workgroup¸ choose primary.
  6. Choose Create data source.
    New Athena data source
  7. Select the saas_sales_ml table previously created and choose Select.
    Choose your table
  8. Choose to import the table to SPICE and choose Visualize to start creating the new dashboard.
    Finish dataset creation

In the analysis section, you receive a message that informs you that the table was successfully imported to SPICE.

SPICE import complete

Create the parameter and control to select the language

To create the parameter and associate the control that you use to select the language for the dashboard, complete the following steps:

  1. In the analysis section, choose Parameters and Create one.
  2. For Name, enter Language.
  3. For Data type, choose String.
  4. For Values, select Single value.
  5. For Static default value, enter English.
  6. Choose Create.
    Create new parameter
  7. To connect the parameter to a control, choose Control.
    Connect parameter to control
  8. For Display name, choose Language.
  9. For Style, choose Dropdown.
  10. For Values, select Specific values.
  11. For Define specific values, enter English, German, Italian, and French (one value per line).
  12. Select Hide Select all option from the control values if the parameter has a default configured.
  13. Choose Add.
    Define control properties

The control is now available, linked to the parameter and displayed in the Controls section of the current sheet in the analysis.

Language control preview

Create dynamic multilingual calculated fields

You’re now ready to create the calculated fields whose value will change based on the currently selected language.

  1. In the menu bar, choose Add and choose Add calculated field.
    Add calculated field
  2. Use the ifelse conditional function to evaluate the value of the Language parameter and select the correct column in the dataset to assign the value to the calculated field.
  3. Create the Country calculated field using the following expression:
    ifelse(
        ${Language} = 'English', {country_en},
        ${Language} = 'German', {country_de},
        ${Language} = 'Italian', {country_it},
        ${Language} = 'Spanish', {country_es},
        {country_en}
    )
  4. Choose Save.
    Calculated field definition in Amazon QuickSight
  5. Repeat the process for the City calculated field:
    ifelse(
        ${Language} = 'English', {city_en},
        ${Language} = 'German', {city_de},
        ${Language} = 'Italian', {city_it},
        ${Language} = 'Spanish', {city_es},
        {city_en}
    )
  6. Repeat the process for the Industry calculated field:
    ifelse(
        ${Language} = 'English', {industry_en},
        ${Language} = 'German', {industry_de},
        ${Language} = 'Italian', {industry_it},
        ${Language} = 'Spanish', {industry_es},
        {industry_en}
    )

The calculated fields are now available and ready to use in the analysis.

Calculated fields available in analysis

Create an analysis with calculated multilingual calculated fields

Create an analysis with two donut charts and a pivot table that use the three multilingual fields. In the subtitle of the visuals, use the string Language: <<$Language>> to display the currently selected language. The following screenshot shows our analysis.

Analysis with Language control - English

If you choose a new language from the Language control, the visuals adapt accordingly. The following screenshot shows the analysis in Italian.

Analysis with Language control - Italian

You’re now ready to publish the analysis as a dashboard.

Publish the multilingual dashboard

In the menu bar, choose Share and Publish dashboard.

Publish dashboard menu

Publish the new dashboard as “Multilingual dashboard,” leave the advanced publish options at their default values, and choose Publish dashboard.

Publish dashboard with name

The dashboard is now ready.

Published dashboard

We can take the multilingual features one step further by embedding the dashboard and controlling the parameters in the external page using the Amazon QuickSight Embedding SDK.

Create parametric headers and titles for visuals for use in an embedded dashboard

When embedding an QuickSight dashboard, the locale and parameters’ values can be set programmatically from JavaScript. This can be useful to set default values and change the settings for localization and the default data language. The following steps show how to use these features by modifying the dashboard we have created so far, embedding it in an HTML page, and using the Amazon QuickSight Embedding SDK to dynamically set the value of parameters used to display titles, legends, headers, and more in translated text. The full code for the HTML page is also provided in the appendix of this post.

Create new parameters for the titles and the headers of the visuals in the analysis, the sheet name, visuals legends, and control labels as per the following table.

Name Data type Values Static default value
city String Single value City
country String Single value Country
donut01title String Single value Sales by Country
donut02title String Single value Quantity by Industry
industry String Single value Industry
Language String Single value English
languagecontrollabel String Single value Language
pivottitle String Single value Sales by Country, City and Industy
sales String Single value Sales
sheet001name String Single value Summary View

The parameters are now available on the Parameters menu.

You can now use the parameters inside each sheet title, visual title, legend title, column header, axis label, and more in your analysis. The following screenshots provide examples that illustrate how to insert these parameters into each title.

First, we insert the sheet name.

Then we add the language control name.

We edit the donut charts’ titles.

Donut chart title

We also add the donut charts’ legend titles.

Donut chart legend title

In the following screenshot, we specify the pivot table row names.

Pivot table row names

We also specify the pivot table column names.

Pivot table column names

Publish the analysis to a new dashboard and follow the steps in the post Embed interactive dashboards in your apps and portals in minutes with Amazon QuickSight’s new 1-click embedding feature to embed the dashboard in an HTML page hosted in your website or web application.

The example HTML page provided in the appendix of this post contains one control to switch among the four languages you created in the dataset in the previous sections with the option to automatically sync the QuickSight UI locale when changing the language, and one control to independently change the UI locale as required.

The following screenshots provide some examples of combinations of data language and QuickSight UI locale.

The following is an example of English data language with the English QuickSight UI locale.

Embedded dashboard with English language and English locale

The following is an example of Italian data language with the synchronized Italian QuickSight UI locale.

Embedded dashboard with Italian language and synced Italian locale

The following screenshot shows German data language with the Japanese QuickSight UI locale.

Embedded dashboard with German language and Japanese locale

Conclusion

This post demonstrated how to automatically translate data using machine learning and build a multilingual dashboard with Athena, QuickSight, and Amazon Translate, and how to add advanced multilingual features with QuickSight embedded dashboards. You can use the same approach to display different values for dimensions as well as metrics depending on the values of one or more parameters.

QuickSight provides a 30-day free trial subscription for four users; you can get started immediately. You can learn more and ask questions about QuickSight in the Amazon QuickSight Community.

Appendix: Embedded dashboard host page

The full code for the HTML page is as follows:

<!DOCTYPE html>
<html>
    <head>
        <title>Amazon QuickSight Multilingual Embedded Dashboard</title>
        <script src="https://unpkg.com/amazon-quicksight-embedding-sdk@1.18.1/dist/quicksight-embedding-js-sdk.min.js"></script>
        <script type="text/javascript">

            var url = "https://<<YOUR_AMAZON_QUICKSIGHT_REGION>>.quicksight.thinkwithwp.com/sn/embed/share/accounts/<<YOUR_AWS_ACCOUNT_ID>>/dashboards/<<DASHBOARD_ID>>?directory_alias=<<YOUR_AMAZON_QUICKSIGHT_ACCOUNT_NAME>>"
            var defaultLanguageOptions = 'en_US'
            var dashboard

            var trns = {
                en_US: {
                    locale: "en-US",
                    language: "English",
                    languagecontrollabel: "Language",
                    sheet001name: "Summary View",
                    sales: "Sales",
                    country: "Country",
                    city: "City",
                    industry: "Industry",
                    quantity: "Quantity",
                    by: "by",
                    and: "and"
                },
                de_DE: {
                    locale: "de-DE",
                    language: "German",
                    languagecontrollabel: "Sprache",
                    sheet001name: "Zusammenfassende Ansicht",
                    sales: "Umsätze",
                    country: "Land",
                    city: "Stadt",
                    industry: "Industrie",
                    quantity: "Anzahl",
                    by: "von",
                    and: "und"
                },
                it_IT: {
                    locale: "it-IT",
                    language: "Italian",
                    languagecontrollabel: "Lingua",
                    sheet001name: "Prospetto Riassuntivo",
                    sales: "Vendite",
                    country: "Paese",
                    city: "Città",
                    industry: "Settore",
                    quantity: "Quantità",
                    by: "per",
                    and: "e"
                },
                es_ES: {
                    locale: "es-ES",
                    language: "Spanish",
                    languagecontrollabel: "Idioma",
                    sheet001name: "Vista de Resumen",
                    sales: "Ventas",
                    country: "Paìs",
                    city: "Ciudad",
                    industry: "Industria",
                    quantity: "Cantidad",
                    by: "por",
                    and: "y"
                }
            }

            function setLanguageParameters(l){

                return {
                            Language: trns[l]['language'],
                            languagecontrollabel: trns[l]['languagecontrollabel'],
                            sheet001name: trns[l]['sheet001name'],
                            donut01title: trns[l]['sales']+" "+trns[l]['by']+" "+trns[l]['country'],
                            donut02title: trns[l]['quantity']+" "+trns[l]['by']+" "+trns[l]['industry'],
                            pivottitle: trns[l]['sales']+" "+trns[l]['by']+" "+trns[l]['country']+", "+trns[l]['city']+" "+trns[l]['and']+" "+trns[l]['industry'],
                            sales: trns[l]['sales'],
                            country: trns[l]['country'],
                            city: trns[l]['city'],
                            industry: trns[l]['industry'],
                        }
            }

            function embedDashboard(lOpts, forceLocale) {

                var languageOptions = defaultLanguageOptions
                if (lOpts) languageOptions = lOpts

                var containerDiv = document.getElementById("embeddingContainer");
                containerDiv.innerHTML = ''

                parameters = setLanguageParameters(languageOptions)

                if(!forceLocale) locale = trns[languageOptions]['locale']
                else locale = forceLocale

                var options = {
                    url: url,
                    container: containerDiv,
                    parameters: parameters,
                    scrolling: "no",
                    height: "AutoFit",
                    loadingHeight: "930px",
                    width: "1024px",
                    locale: locale
                };

                dashboard = QuickSightEmbedding.embedDashboard(options);
            }

            function onLangChange(langSel) {

                var l = langSel.value

                if(!document.getElementById("changeLocale").checked){
                    dashboard.setParameters(setLanguageParameters(l))
                }
                else {
                    var selLocale = document.getElementById("locale")
                    selLocale.value = trns[l]['locale']
                    embedDashboard(l)
                }
            }

            function onLocaleChange(obj) {

                var locl = obj.value
                var lang = document.getElementById("lang").value

                document.getElementById("changeLocale").checked = false
                embedDashboard(lang,locl)

            }

            function onSyncLocaleChange(obj){

                if(obj.checked){
                    var selLocale = document.getElementById('locale')
                    var selLang = document.getElementById('lang').value
                    selLocale.value = trns[selLang]['locale']
                    embedDashboard(selLang, trns[selLang]['locale'])
                }            
            }

        </script>
    </head>

    <body onload="embedDashboard()">

        <div style="text-align: center; width: 1024px;">
            <h2>Amazon QuickSight Multilingual Embedded Dashboard</h2>

            <span>
                <label for="lang">Language</label>
                <select id="lang" name="lang" onchange="onLangChange(this)">
                    <option value="en_US" selected>English</option>
                    <option value="de_DE">German</option>
                    <option value="it_IT">Italian</option>
                    <option value="es_ES">Spanish</option>
                </select>
            </span>

            &nbsp;-&nbsp;
            
            <span>
                <label for="changeLocale">Sync UI Locale with Language</label>
                <input type="checkbox" id="changeLocale" name="changeLocale" onchange="onSyncLocaleChange(this)">
            </span>

            &nbsp;|&nbsp;

            <span>
                <label for="locale">QuickSight UI Locale</label>
                <select id="locale" name="locale" onchange="onLocaleChange(this)">
                    <option value="en-US" selected>English</option>
                    <option value="da-DK">Dansk</option>
                    <option value="de-DE">Deutsch</option>
                    <option value="ja-JP">日本語</option>
                    <option value="es-ES">Español</option>
                    <option value="fr-FR">Français</option>
                    <option value="it-IT">Italiano</option>
                    <option value="nl-NL">Nederlands</option>
                    <option value="nb-NO">Norsk</option>
                    <option value="pt-BR">Português</option>
                    <option value="fi-FI">Suomi</option>
                    <option value="sv-SE">Svenska</option>
                    <option value="ko-KR">한국어</option>
                    <option value="zh-CN">中文 (简体)</option>
                    <option value="zh-TW">中文 (繁體)</option>            
                </select>
            </span>
        </div>

        <div id="embeddingContainer"></div>

    </body>

</html>

About the Author

Author Francesco MarelliFrancesco Marelli is a principal solutions architect at Amazon Web Services. He is specialized in the design and implementation of analytics, data management, and big data systems. Francesco also has a strong experience in systems integration and design and implementation of applications. He is passionate about music, collecting vinyl records, and playing bass.