AWS News Blog

Category: Amazon SageMaker

Now available in Amazon SageMaker: EC2 P3dn GPU Instances

In recent years, the meteoric rise of deep learning has made incredible applications possible, such as detecting skin cancer (SkinVision) and building autonomous vehicles (TuSimple). Thanks to neural networks, deep learning indeed has the uncanny ability to extract and model intricate patterns from vast amounts of unstructured data (e.g. images, video, and free-form text). However, […]

Managed Spot Training: Save Up to 90% On Your Amazon SageMaker Training Jobs

Amazon SageMaker is a fully-managed, modular machine learning (ML) service that enables developers and data scientists to easily build, train, and deploy models at any scale. With a choice of using built-in algorithms, bringing your own, or choosing from algorithms available in AWS Marketplace, it’s never been easier and faster to get ML models from […]

Amazon SageMaker Ground Truth Keeps Simplifying Labeling Workflows

Launched at AWS re:Invent 2018, Amazon SageMaker Ground Truth is a capability of Amazon SageMaker that makes it easy for customers to efficiently and accurately label the datasets required for training machine learning systems. A quick recap on Amazon SageMaker Ground Truth Amazon SageMaker Ground Truth helps you build highly accurate training datasets for machine […]

Load profile

Amazon SageMaker RL – Managed Reinforcement Learning with Amazon SageMaker

In the last few years, machine learning (ML) has generated a lot of excitement. Indeed, from medical image analysis to self-driving trucks, the list of complex tasks that ML models can successfully accomplish keeps growing, but what makes these models so smart? In a nutshell, you can train a model in several different ways of which […]

Working

Amazon SageMaker Ground Truth – Build Highly Accurate Datasets and Reduce Labeling Costs by up to 70%

In 1959, Arthur Samuel defined machine learning as a “field of study that gives computers the ability to learn without being explicitly programmed”. However, there is no deus ex machina: the learning process requires an algorithm (“how to learn”) and a training dataset (“what to learn from”). Today, most machine learning tasks use a technique […]

Amazon Elastic Inference – GPU-Powered Deep Learning Inference Acceleration

One of the reasons for the recent progress of Artificial Intelligence and Deep Learning is the fantastic computing capabilities of Graphics Processing Units (GPU). About ten years ago, researchers learned how to harness their massive hardware parallelism for Machine Learning and High Performance Computing: curious minds will enjoy the seminal paper (PDF) published in 2009 […]

Amazon SageMaker Adds Batch Transform Feature and Pipe Input Mode for TensorFlow Containers

At the New York Summit a few days ago we launched two new Amazon SageMaker features: a new batch inference feature called Batch Transform that allows customers to make predictions in non-real time scenarios across petabytes of data and Pipe Input Mode support for TensorFlow containers. SageMaker remains one of my favorite services and we’ve […]