- Analytics›
- AWS Clean Rooms›
- คำถามที่พบบ่อย
คำถามที่พบบ่อยเกี่ยวกับ AWS Clean Rooms
ข้อมูลทั่วไป
ถาม: AWS Clean Rooms คืออะไร
AWS Clean Rooms เป็นบริการใหม่ที่ช่วยให้คุณและพาร์ทเนอร์ของคุณสามารถวิเคราะห์และทำงานร่วมกันในชุดข้อมูลรวมของคุณได้ง่ายยิ่งขึ้นเพื่อรับข้อมูลเชิงลึกใหม่ โดยไม่ต้องมีการเปิดเผยข้อมูลพื้นฐานต่อกัน คุณสามารถสร้างพื้นที่ปลอดภัยของคุณเองได้ในไม่กี่นาที และเริ่มวิเคราะห์ชุดข้อมูลรวมของคุณกับพาร์ทเนอร์ของคุณได้ด้วยเพียงไม่กี่ขั้นตอน เมื่อใช้ AWS Clean Rooms คุณจะสามารถร่วมงานกับบริษัทหลายแสนบริษัทซึ่งใช้ AWS อยู่แล้วได้อย่างง่ายดาย โดยไม่ต้องย้ายข้อมูลออกจาก AWS หรือโหลดข้อมูลลงในแพลตฟอร์มอื่น
การทำงานร่วมกันใน AWS Clean Rooms คืออะไร
การทํางานร่วมกันของ AWS Clean Rooms เป็นขอบเขตเชิงตรรกะที่ปลอดภัยซึ่งช่วยให้สมาชิกที่ทํางานร่วมกันสามารถเรียกใช้การสืบค้น SQL และดําเนินการสร้างแบบจําลอง ML โดยไม่ต้องแชร์ข้อมูลดิบกับคู่ค้าของตน เฉพาะบริษัทที่ได้รับเชิญเข้ามาในการทำงานร่วมกันเท่านั้นที่จะสามารถเข้ามาทำงานร่วมกันได้ ผู้เข้าร่วมหลายคนสามารถให้ข้อมูลในการทำงานร่วมกันได้ และสมาชิกหนึ่งคนสามารถรับผลลัพธ์ได้ เฉพาะบริษัทที่ได้รับเชิญเท่านั้นที่สามารถเข้าร่วมการทำงานร่วมกันของ AWS Clean Rooms
AWS Clean Rooms มีเทคนิคการวิเคราะห์ประเภทใดบ้าง
จากคอนโซลการจัดการของ AWS คุณสามารถเลือกประเภทของการวิเคราะห์ที่คุณต้องการดําเนินการ พาร์ทเนอร์ที่คุณต้องการทํางานร่วมกัน และชุดข้อมูลที่คุณต้องการมีส่วนร่วมในการทํางานร่วมกัน ด้วย AWS Clean Rooms คุณสามารถทําการวิเคราะห์ได้สองประเภท คือ การสืบค้น SQL และ แมชชีนเลิร์นนิง
เมื่อคุณเรียกใช้การสืบค้น SQL หรือ Spark SQL ทาง AWS Clean Rooms จะอ่านข้อมูลในที่ที่ข้อมูลนั้นอยู่ และใช้กฎการวิเคราะห์ในตัวที่ยืดหยุ่นเพื่อช่วยให้คุณควบคุมข้อมูลของคุณได้ AWS Clean Rooms มีชุดควบคุมที่เพิ่มความเป็นส่วนตัวมากมาย รวมถึงการควบคุมการค้นหา ข้อจำกัดเอาต์พุตของการค้นหา และการบันทึกการค้นหา ซึ่งช่วยให้คุณสามารถปรับแต่งการจำกัดการค้นหาที่ดำเนินการโดยผู้เข้าร่วมพื้นที่ปลอดภัยแต่ละรายได้ คุณสามารถใช้เครื่องมือวิเคราะห์ Spark เพื่อเรียกใช้การสืบค้นโดยใช้ภาษา Spark SQL ในการทำงานร่วมกันของ AWS Clean Rooms ได้ AWS Clean Rooms Spark SQL มีขนาดการประมวลผลที่กำหนดค่าได้เพื่อเพิ่มความยืดหยุ่นในการปรับแต่งและจัดสรรทรัพยากรเพื่อเรียกใช้การสืบค้น SQL ตามข้อกำหนดด้านประสิทธิภาพ ขนาด และค่าใช้จ่ายของคุณ AWS Clean Rooms Spark SQL พร้อมใช้งานสำหรับกฎการวิเคราะห์แบบกำหนดเองเท่านั้น การปกป้องความเป็นส่วนตัวแบบป้องกันการระบุตัวตนของ AWS Clean Rooms จะช่วยคุณปกป้องความเป็นส่วนตัวของผู้ใช้ด้วยการควบคุมที่ได้รับการสนับสนุนทางคณิตศาสตร์และใช้งานง่ายในไม่กี่คลิก เมื่อใช้กลไกการวิเคราะห์ SQL คุณจะสามารถใช้การปกป้องความเป็นส่วนตัวแบบป้องกันการระบุตัวตนของ AWS Clean Rooms ได้โดยการเลือกกฎการวิเคราะห์ SQL แบบกำหนดเอง จากนั้นกำหนดค่าพารามิเตอร์ความเป็นส่วนตัวส่วนต่างที่คุณต้องการ และการประมวลผลแบบเข้ารหัสสำหรับ Clean Rooms (C3R) ช่วยให้คุณเก็บข้อมูลที่ละเอียดอ่อนได้รับการเข้ารหัสระหว่างการวิเคราะห์ SQL ของคุณเมื่อใช้กลไกการวิเคราะห์ Spark หรือกลไกการวิเคราะห์ SQL เพื่อเรียกใช้การสืบค้นของคุณ หากต้องการใช้งานการปกป้องความเป็นส่วนตัวแบบป้องกันการระบุตัวตนของ AWS Clean Rooms หรือใช้กฎการรวมหรือรายการการวิเคราะห์ในการทำงานร่วมกัน คุณจะต้องใช้ SQL เป็นเครื่องมือวิเคราะห์
AWS Clean Rooms ML ช่วยให้คุณและพาร์ทเนอร์สามารถใช้แมชชีนเลิร์นนิง (ML) ที่ปรับปรุงความเป็นส่วนตัวเพื่อสร้างข้อมูลเชิงลึกเชิงคาดการณ์ได้โดยไม่ต้องแชร์ข้อมูลดิบระหว่างกัน ด้วยการสร้างแบบจําลองที่คล้ายกันของ AWS Clean Rooms ML คุณสามารถฝึกโมเดลแบบกําหนดเองของคุณโดยใช้ข้อมูลของคุณ และเชิญพาร์ทเนอร์ของคุณให้นําตัวอย่างบันทึกเล็กๆ ของพวกเขามาสู่การทํางานร่วมกันเพื่อสร้างชุดบันทึกที่คล้ายกันเพิ่มเติมในขณะที่ปกป้องคุณและข้อมูลพื้นฐานของพาร์ทเนอร์ของคุณ การสร้างแบบจําลองการดูแลสุขภาพจะพร้อมใช้งานในอีกไม่กี่เดือนข้างหน้า
AWS Clean Rooms ML ถูกสร้างขึ้นและทดสอบในชุดข้อมูลที่หลากหลาย เช่น อีคอมเมิร์ซและการสตรีมวิดีโอ และสามารถช่วยให้ลูกค้าปรับปรุงความแม่นยําในการสร้างแบบจําลองที่คล้ายกันได้ถึง 36% เมื่อเทียบกับพื้นฐานอุตสาหกรรมที่เป็นตัวแทน ในแอปพลิเคชันในโลกแห่งความเป็นจริงเช่นการหาลูกค้าใหม่ การปรับปรุงความแม่นยํานี้สามารถแปลการประหยัดเงินได้หลายล้านดอลลาร์
ฉันจะเริ่มต้นใช้งาน AWS Clean Rooms ได้อย่างไร
เมื่อใช้คอนโซลการจัดการของ AWS หรือการปฏิบัติการ API คุณจะสร้างการทํางานร่วมกันในพื้นที่ปลอดภัย เชิญบริษัทที่คุณต้องการทํางานด้วย และเลือกความสามารถที่ผู้เข้าร่วมแต่ละคนมีในการทํางานร่วมกัน จากนั้นผู้เข้าร่วมสามารถตั้งค่ากฎสําหรับวิธีการสืบค้นข้อมูลที่มีโครงสร้าง และฝึกโมเดล ML บนข้อมูลของตนได้ ชุดข้อมูลจะไม่ถูกคัดลอกจากบัญชีผู้เข้าร่วม และสามารถเข้าถึงได้เมื่อจําเป็นเท่านั้น เมื่อใช้ AWS Clean Rooms คุณสามารถเลือกประเภทของการวิเคราะห์ที่คุณต้องการดําเนินการ ได้แก่ การสืบค้น SQL และการสร้างโมเดล ML โดยใช้ AWS Clean Rooms ML เมื่อใช้การสืบค้น SQL คุณยังใช้ความสามารถเพิ่มเติม เช่น ตัวสร้างการวิเคราะห์แบบไม่ต้องเขียนโค้ด AWS Clean Rooms Differential Privacy และการประมวลผลข้อมูลเข้ารหัสลับได้อีกด้วย เมื่อผู้เข้าร่วมการทํางานร่วมกันเชื่อมโยงข้อมูลหรือโมเดลกับการทํางานร่วมกันและการวิเคราะห์ทํางานแล้ว ผลลัพธ์การทํางานร่วมกันจะถูกจัดเก็บไว้ในบัคเก็ต Amazon Simple Storage Service (Amazon S3) ที่กําหนด
คำถาม: การทำงานร่วมกันหนึ่งรายการมีสมาชิกได้กี่คน
AWS Clean Rooms รองรับผู้เข้าร่วมสูงสุดห้าคนต่อการทำงานร่วมกันหนึ่งรายการ
คำถาม: ใครจะเป็นผู้กำหนดคนที่จะสามารถเข้าถึงการทำงานร่วมกันใน AWS Clean Rooms
คุณจะเป็นผู้ควบคุมว่าใครสามารถเข้าร่วมการทำงานร่วมกันใน AWS Clean Rooms ของคุณได้บ้าง และคุณสามารถสร้างการทำงานร่วมกันหรือตอบรับคำเชิญให้ทำงานร่วมกันได้ การเข้าร่วมของแต่ละฝ่ายนั้นล้วนมีความโปร่งใสสำหรับในการทำงานร่วมกัน และไม่สามารถเพิ่มบัญชีใหม่ได้หลังจากสร้างการทำงานร่วมกันแล้ว อย่างไรก็ตาม คุณสามารถสร้างการทำงานร่วมกันใหม่กับลูกค้าหรือพาร์ทเนอร์รายอื่นได้หากจำเป็น คุณเป็นผู้กำหนดและจัดการการเข้าถึงเนื้อหาของคุณ และยังสามารถกำหนดสิทธิ์การเข้าถึงบริการและทรัพยากรของ AWS ผ่านผู้ใช้ กลุ่ม สิทธิ์ และข้อมูลประจำตัวที่คุณควบคุมได้ด้วย
ใครที่สามารถรับข้อมูลเชิงลึกจากการทำงานร่วมกันใน AWS Clean Rooms ได้
ลูกค้าสามารถสร้างข้อมูลเชิงลึกโดยใช้การสร้างโมเดล SQL หรือ AWS Clean Rooms ML บนชุดข้อมูลรวมกับพาร์ทเนอร์โดยไม่ต้องแชร์หรือเปิดเผยข้อมูลพื้นฐาน
เมื่อใช้ SQL ผู้ทำงานร่วมกันหลายคนสามารถให้ข้อมูลได้ แต่มีผู้ทำงานร่วมกันเพียงคนเดียวเท่านั้นที่สามารถเรียกใช้คำสั่ง SQL และมีเพียงคนเดียวเท่านั้นที่สามารถรับผลลัพธ์ได้ เมื่อเข้าร่วมการทํางานร่วมกันผู้ทํางานร่วมกันจะตกลงกันว่าฝ่ายใดจะดําเนินการสอบถาม ฝ่ายใดจะได้รับผลลัพธ์ และฝ่ายใดจะต้องรับผิดชอบค่าใช้จ่ายในการคํานวณ เฉพาะผู้ที่คุณเชิญให้เข้าร่วมการทํางานร่วมกันเท่านั้นที่จะได้รับข้อมูลเชิงลึกตามกฎการวิเคราะห์ที่คุณกําหนด เมื่อคุณตั้งค่าการทํางานร่วมกันใน AWS Clean Rooms คุณสามารถระบุความสามารถที่แตกต่างกันสําหรับสมาชิกการทํางานร่วมกันแต่ละคนเพื่อให้เหมาะกับกรณีการใช้งานเฉพาะของคุณ ตัวอย่างเช่น ถ้าคุณต้องการให้ผลลัพธ์การสืบค้นไปยังสมาชิกอื่น คุณสามารถกําหนดให้สมาชิกคนหนึ่งเป็นตัวเรียกการสืบค้นที่สามารถเขียนการสืบค้น และสมาชิกอีกคนเป็นตัวรับผลลัพธ์การสืบค้นที่สามารถรับผลลัพธ์ได้ วิธีนี้ช่วยให้ผู้สร้างการทํางานร่วมกันสามารถตรวจสอบให้แน่ใจว่าสมาชิกที่สามารถสืบค้นไม่สามารถเข้าถึงผลลัพธ์การสืบค้นได้
เมื่อใช้ AWS Clean Rooms ML ผู้ทํางานร่วมกันจะนําชุดตัวอย่างบันทึกตามที่พวกเขาต้องการค้นหาเซ็กเมนต์ที่คล้ายกันจากพาร์ทเนอร์ของตน อีกฝ่ายมีประชากรจํานวนมากกว่าซึ่งเราสร้างเซ็กเมนต์ที่คล้ายกันโดยพิจารณาจากความคล้ายคลึงกันกับบันทึกตัวอย่าง AWS Clean Rooms ML จะส่งเซ็กเมนต์ที่มีลักษณะคล้ายกับเอาต์พุตไปยังปลายทางที่ระบุโดยฝ่ายที่นําประชากรจํานวนมากกว่า ซึ่งเราได้ segment ที่คล้ายกันมา
AWS Clean Rooms มีคุณสมบัติของการแก้ไขปัญหาเกี่ยวกับการระบุตัวตนที่ฉันสามารถใช้จับคู่ข้อมูลของตัวเองกับข้อมูลของพันธมิตรได้หรือไม่
AWS Entity Resolution นั้นรวมอยู่ใน AWS Clean Rooms แบบดั้งเดิม คุณสามารถใช้การจับคู่ตามกฎหรือผู้ให้บริการข้อมูลเพื่อเตรียม จับคู่ และเชื่อมโยงข้อมูลผู้ใช้ของคุณกับข้อมูลของพันธมิตรของคุณโดยใช้คีย์ทั่วไปที่คุณเลือกใช้ (เช่น ตัวระบุนามแฝง) ภายในการทำงานร่วมกันของ AWS Clean Rooms ที่ได้รับการปรับปรุงความเป็นส่วนตัว
AWS Clean Rooms มีให้บริการใน AWS Region ใดบ้าง
AWS Clean Rooms พร้อมให้บริการในสหรัฐอเมริกาฝั่งตะวันออก (โอไฮโอ) สหรัฐอเมริกาฝั่งตะวันออก (เวอร์จิเนียฝั่งเหนือ) สหรัฐอเมริกาฝั่งตะวันตก (ออริกอน) เอเชียแปซิฟิก (โซล) เอเชียแปซิฟิก (สิงคโปร์) เอเชียแปซิฟิก (ซิดนีย์ ) เอเชียแปซิฟิก (โตเกียว) ยุโรป (แฟรงก์เฟิร์ต) ยุโรป (ไอร์แลนด์) ยุโรป (ลอนดอน) และยุโรป (สตอกโฮล์ม)
ใครเป็นผู้จ่ายค่าการทํางานร่วมกันใน AWS Clean Rooms
ด้วย AWS Clean Rooms คุณสามารถใช้กฎการวิเคราะห์ SQL ที่ยืดหยุ่นและ ML ที่ปรับปรุงความเป็นส่วนตัวเพื่อตอบสนองความต้องการทางธุรกิจของคุณ เมื่อคุณใช้การวิเคราะห์ SQL คุณสามารถเลือกได้อย่างยืดหยุ่นว่าผู้ร่วมงานคนใดจ่ายสําหรับความสามารถในการประมวลผลของการสืบค้น SQL ที่เรียกใช้การทำงานร่วมกัน บนหน่วยประมวลผลพื้นที่ปลอดภัย (CRPU) – ชั่วโมงต่อวินาที (โดยมีค่าใช้จ่ายขั้นต่ำ 60 วินาที) เมื่อคุณใช้ AWS Clean Rooms ML คุณจะจ่ายเฉพาะการฝึกโมเดลที่คุณร้องขอ และสําหรับเซ็กเมนต์ที่คล้ายกันที่สร้างขึ้นตามราคาต่อ 1,000 โปรไฟล์เท่านั้น สำหรับข้อมูลเพิ่มเติม โปรดดูราคาของ AWS Clean Rooms
ใครจ่ายเงินสำหรับการใช้เทคนิคการจับคู่ AWS Entity Resolution ใน AWS Clean Rooms
ด้วย AWS Entity Resolution บน AWS Clean Rooms คุณสามารถใช้ชุดข้อมูลผู้ให้บริการ (เช่น LiveRamp) ที่จับคู่ตามกฎหรือผู้ให้บริการข้อมูล
เมื่อคุณใช้การจับคู่ตามกฎ สมาชิกอย่างน้อยหนึ่งคนในการทำงานร่วมกันจะต้องเตรียมข้อมูลของตนก่อนที่จะจับคู่กับชุดข้อมูลของพันธมิตร เว้นแต่พวกเขาได้เตรียมข้อมูลโดยใช้ AWS Entity Resolution ก่อนที่จะสร้างหรือเข้าร่วมการทำงานร่วมกัน สมาชิกนี้จะจ่ายค่าจัดเตรียมข้อมูลเฉพาะในกรณีที่ใช้ สมาชิกทุกคนที่เข้าร่วมในการทำงานร่วมกันสามารถชำระเงินสำหรับการจับคู่ข้อมูล การจับคู่ข้อมูลยังต้องใช้ค่าธรรมเนียมครั้งเดียวต่อการทำงานร่วมกัน และค่าธรรมเนียมนี้จะถูกกำหนดให้กับผู้ร่วมงานใด ๆ ที่จ่ายสำหรับการจับคู่ข้อมูล
เมื่อคุณใช้การจับคู่ตามผู้ให้บริการข้อมูล สมาชิกที่ทำงานร่วมกันทุกคนจะต้องมีการสมัครสมาชิกผู้ให้บริการเพื่อเตรียมข้อมูลโดยใช้รหัสผู้ให้บริการ สมาชิกที่ทำงานร่วมกันทุกคนจะต้องเตรียมข้อมูลโดยใช้รหัสผู้ให้บริการก่อนที่จะจับคู่กับชุดข้อมูลของพันธมิตร เว้นแต่พวกเขาได้เตรียมข้อมูลโดยใช้ AWS Entity Resolution ก่อนที่จะสร้างหรือเข้าร่วมการทำงานร่วมกัน สมาชิกทุกคนที่เข้าร่วมในการทำงานร่วมกันสามารถชำระเงินสำหรับการจับคู่ข้อมูลโดยใช้รหัสของผู้ให้บริการ นอกจากนี้ สมาชิกที่จ่ายเงินสำหรับการจับคู่ข้อมูลจะต้องมีการสมัครสมาชิกผู้ให้บริการ คุณสามารถใช้การสมัครสมาชิกสาธารณะที่ระบุไว้ใน AWS Data Exchange (ADX) หรือสมัครสมาชิกส่วนตัวโดยตรงกับผู้ให้บริการข้อมูลที่คุณเลือก จากนั้นใช้ Bring Your Own Subscription (BYOS) ไปยัง ADX
สำหรับข้อมูลเพิ่มเติม โปรดดูที่ AWS Entity Resolution เกี่ยวกับราคา AWS Clean Rooms
AWS Clean Rooms ML
AWS Clean Rooms ML คืออะไร
AWS Clean Rooms ML ช่วยให้คุณและพาร์ทเนอร์ใช้โมเดล ML กับข้อมูลโดยรวมของคุณเพื่อปลดล็อกข้อมูลเชิงลึกเชิงคาดการณ์โดยไม่ต้องแชร์ข้อมูลที่ละเอียดอ่อนซึ่งกันและกัน ด้วยความสามารถของ AWS Clean Rooms นี้ คุณสามารถเชิญพาร์ทเนอร์ของคุณไปยังพื้นที่ปลอดภัยและใช้โมเดล ML ที่มีการจัดการและพร้อมใช้งานของ AWS ซึ่งได้รับการฝึกอบรมสําหรับการทํางานร่วมกันแต่ละครั้งเพื่อสร้างชุดข้อมูลที่คล้ายกันในไม่กี่ขั้นตอน ซึ่งช่วยประหยัดเวลาหลายเดือนในการพัฒนาเพื่อสร้าง ฝึกอบรม ปรับแต่ง และปรับใช้โมเดลของคุณเอง
AWS Clean Rooms ML ช่วยให้ลูกค้าที่มีกรณีการใช้งานหลายกรณี เช่น สายการบินสามารถใช้ประโยชน์จากข้อมูลเกี่ยวกับลูกค้า ทํางานร่วมกับบริการจองออนไลน์ และระบุผู้มีโอกาสเป็นลูกค้าที่มีลักษณะคล้ายกัน ผู้ให้สินเชื่อรถยนต์และบริษัทประกันภัยรถยนต์สามารถระบุผู้ที่คาดว่าจะเป็นลูกค้าประกันภัยรถยนต์ซึ่งมีลักษณะร่วมกับกลุ่มเจ้าของสัญญาเช่าที่มีอยู่ และแบรนด์และตัวเผยแพร่ข้อความสามารถสร้างโมเดลกลุ่มลูกค้าที่มีตลาดใกล้เคียงกัน และนําเสนอประสบการณ์ด้านโฆษณาที่มีความเกี่ยวข้องกับกลุ่มสูง โดยที่ไม่มีบริษัทใดแบ่งปันข้อมูลพื้นฐานให้กับบริษัทอื่น การสร้างแบบจําลองการดูแลสุขภาพจะพร้อมใช้งานในอีกไม่กี่เดือนข้างหน้า
AWS Clean Rooms ML ถูกสร้างขึ้นและทดสอบในชุดข้อมูลที่หลากหลาย เช่น อีคอมเมิร์ซและการสตรีมวิดีโอ และสามารถช่วยให้ลูกค้าปรับปรุงความแม่นยําในการสร้างแบบจําลองที่คล้ายกันได้ถึง 36% เมื่อเทียบกับพื้นฐานอุตสาหกรรมที่เป็นตัวแทน ในแอปพลิเคชันในโลกแห่งความเป็นจริงเช่นการหาลูกค้าใหม่ การปรับปรุงความแม่นยํานี้สามารถแปลการประหยัดเงินได้หลายล้านดอลลาร์
AWS Clean Rooms ML ทํางานอย่างไร
ด้วยการสร้างแบบจําลองที่คล้ายกันของ AWS Clean Rooms ML คุณจะสามารถฝึกโมเดลแบบกําหนดเองของคุณเองได้โดยใช้ข้อมูลของคุณ และเชิญพาร์ทเนอร์ของคุณให้นําตัวอย่างบันทึกจำนวนเล็กน้อยของตนมาสู่การทํางานร่วมกันเพื่อสร้างชุดบันทึกที่คล้ายกันเพิ่มเติมได้ ในขณะที่ปกป้องข้อมูลพื้นฐานของคุณและของพาร์ทเนอร์ AWS Clean Rooms ML จะเก็บตัวอย่างบันทึกเล็กๆ น้อยๆ จากฝ่ายหนึ่ง และค้นหาชุดระเบียนที่ใหญ่กว่ามาก หรือเซ็กเมนต์ที่คล้ายกันจากชุดข้อมูลของผู้ทํางานร่วมกันอีกกลุ่มหนึ่ง AWS Clean Rooms ML จะไม่แชร์ข้อมูลกับฝ่ายใดฝ่ายหนึ่ง และฝ่ายต่างๆ สามารถลบข้อมูลของตนหรือลบโมเดลแบบกําหนดเองได้ทุกเมื่อที่ต้องการ คุณสามารถระบุขนาดที่ต้องการของเซ็กเมนต์ที่คล้ายกันและ AWS Clean Rooms ML จะจับคู่โปรไฟล์ที่ไม่ซ้ำกันในรายการตัวอย่างของคุณกับโปรไฟล์ในชุดข้อมูลของพาร์ทเนอร์ของคุณแบบส่วนตัว แล้วฝึกโมเดล ML ที่คาดการณ์ว่าแต่ละโปรไฟล์ในชุดข้อมูลของผู้ทํางานร่วมกันของคุณมีความคล้ายคลึงกันมากเพียงใด AWS Clean Rooms ML จะจัดกลุ่มโปรไฟล์ที่คล้ายกับรายการตัวอย่างโดยอัตโนมัติ และส่งออกเซ็กเมนต์ที่คล้ายกันที่เป็นผลลัพธ์ AWS Clean Rooms ML ไม่จําเป็นต้องแชร์ข้อมูลเพื่อสร้าง ฝึกอบรม และการปรับใช้โมเดล ML กับพาร์ทเนอร์ของคุณ เมื่อใช้ AWS Clean Rooms ML ข้อมูลของคุณจะถูกใช้เพื่อฝึกโมเดลของคุณเท่านั้น และจะไม่ใช้สําหรับการฝึกอบรมโมเดลของ AWS คุณสามารถใช้การควบคุมที่ใช้งานง่ายซึ่งช่วยให้คุณและพาร์ทเนอร์ของคุณปรับแต่งผลลัพธ์การคาดการณ์ของโมเดลได้
การรักษาความปลอดภัยและการปกป้องข้อมูล
AWS Clean Rooms ช่วยปกป้องข้อมูลได้อย่างไร
การปกป้องข้อมูลเริ่มต้นด้วยรากฐานด้านความปลอดภัยของ AWS และ AWS Clean Rooms สร้างขึ้นจากบริการรักษาความปลอดภัยของ AWS รวมถึง AWS Identity และ Access Management (IAM) AWS Key Management Service (KMS) และ AWS CloudTrail สิ่งนี้ช่วยให้คุณสามารถขยายกลยุทธ์การปกป้องข้อมูลที่มีอยู่ไปยังเวิร์กโหลดการทํางานร่วมกันของข้อมูล เมื่อใช้ AWS Clean Rooms คุณก็ไม่จำเป็นต้องจัดเก็บหรือรักษาสำเนาข้อมูลไว้นอกสภาพแวดล้อม AWS ของคุณ และไม่ต้องส่งข้อมูลให้อีกฝ่ายเพื่อวิเคราะห์ข้อมูลเชิงลึกของผู้บริโภค การวัดผลทางการตลาด การคาดการณ์ หรือการประเมินความเสี่ยงอีกต่อไป
เมื่อคุณตั้งค่าการทํางานร่วมกันของ AWS Clean Rooms และใช้การวิเคราะห์ SQL คุณสามารถระบุความสามารถที่แตกต่างกันสําหรับสมาชิกการทํางานร่วมกันแต่ละคนเพื่อให้เหมาะกับกรณีการใช้งานเฉพาะของคุณ ตัวอย่างเช่น ถ้าคุณต้องการให้ผลลัพธ์ของการสืบค้นไปยังสมาชิกอื่น คุณสามารถกําหนดให้สมาชิกคนหนึ่งเป็นตัวเรียกใช้แบบสอบถามที่สามารถเขียนแบบสอบถาม และสมาชิกอีกคนหนึ่งเป็นตัวรับผลลัพธ์การสืบค้นที่สามารถรับผลลัพธ์ได้ วิธีนี้ช่วยให้ผู้สร้างการทํางานร่วมกันสามารถตรวจสอบให้แน่ใจว่าสมาชิกที่สามารถสืบค้นไม่สามารถเข้าถึงผลลัพธ์การสืบค้นได้
AWS Clean Rooms ช่วยคุณปกป้องข้อมูลด้วยการทำให้คุณจำกัดประเภทการสืบค้นหรือการสืบค้นเฉพาะที่สามารถทำในตารางข้อมูลของคุณได้ผ่านการกำหนดค่ากฎการวิเคราะห์ AWS Clean Rooms รองรับกฎการวิเคราะห์ SQL สามประเภท ได้แก่ การรวม รายการ และแบบกําหนดเอง เมื่อใช้กฎการวิเคราะห์แบบรวม คุณสามารถกำหนดค่าตารางให้อนุญาตการสืบค้นที่สร้างสถิติแบบรวมเท่านั้นได้ (เช่น การวัดผลหรือการระบุที่มาของแคมเปญ) เมื่อใช้กฎการวิเคราะห์แบบรายการ คุณสามารถกำหนดค่าการควบคุมให้การสืบค้นสามารถวิเคราะห์ได้แค่จุดร่วมในชุดข้อมูลของคุณกับชุดข้อมูลของสมาชิกที่สืบค้นได้เท่านั้น ด้วยกฎการวิเคราะห์แบบกําหนดเอง คุณสามารถกําหนดค่าตัวควบคุมระดับการสืบค้นเพื่ออนุญาตให้เรียกใช้บัญชีหรือการสืบค้นเฉพาะบนชุดข้อมูลของคุณได้ เมื่อใช้กฎการวิเคราะห์ที่กําหนดเอง คุณสามารถเลือกใช้ Differential Privacy ได้ AWS Clean Rooms Differential Privacy ช่วยคุณปกป้องความเป็นส่วนตัวของผู้ใช้ด้วยการควบคุมที่ได้รับการสนับสนุนทางคณิตศาสตร์และใช้งานง่ายในไม่กี่คลิก ในฐานะความสามารถในการจัดการเต็มรูปแบบของ AWS Clean Rooms คุณไม่จําเป็นต้องมีประสบการณ์ด้านความเป็นส่วนตัวที่แตกต่างมาก่อนเพื่อช่วยคุณป้องกันการระบุตัวตนผู้ใช้ของคุณอีกครั้ง ตัวควบคุมอื่นคือเกณฑ์การรวม ซึ่งป้องกันไม่ให้การสืบค้นเจาะลึกลงไปที่กลุ่มขนาดเล็กที่อาจระบุตัวตนได้อีกครั้ง
เมื่อใช้ AWS Clean Rooms ML ข้อมูลของคุณจะถูกใช้เพื่อฝึกโมเดลของคุณเท่านั้น และจะไม่ใช้สําหรับการฝึกอบรมโมเดลของ AWS AWS Clean Rooms ML ไม่ได้ใช้การฝึกอบรมของบริษัทใดๆ หรือข้อมูลเซ็กเมนต์ที่คล้ายกันกับบริษัทอื่น และคุณสามารถลบโมเดลและข้อมูลการฝึกอบรมได้ทุกเมื่อที่ต้องการ
ฉันต้องจัดเก็บข้อมูลใน AWS Clean Rooms เพื่อใช้ในการทำงานร่วมกันหรือไม่
ไม่ ชุดข้อมูลจะถูกเก็บไว้ในบัญชี AWS ของผู้ทํางานร่วมกัน AWS Clean Rooms จะอ่านข้อมูลจากบัญชีผู้ทํางานร่วมกันชั่วคราวเพื่อเรียกใช้การสืบค้น จับคู่บันทึก ฝึกอบรมโมเดล ML หรือขยาย seed segment ผลลัพธ์ของการวิเคราะห์จะถูกส่งไปยังตําแหน่ง S3 ที่ออกแบบมาสําหรับการวิเคราะห์
AWS Entity Resolution บน AWS Clean Rooms สร้างชุดข้อมูลที่ทำแผนที่ระหว่างตัวระบุของแต่ละฝ่ายในการทำงานร่วมกัน ชุดข้อมูลการทำแผนที่ได้รับการจัดการโดย AWS Clean Rooms ไม่มีสมาชิกในการทำงานร่วมกันสามารถดูหรือดาวน์โหลดตารางการทำแผนที่ได้ หากสมาชิกทุกคนในการทำงานร่วมกันตกลงที่จะผ่อนคลายการบังคับใช้ความเป็นส่วนตัวนี้ ตารางการทำแผนที่สามารถสอบถามในกรณีการใช้งานเฉพาะได้ ฝ่ายใดฝ่ายหนึ่งสามารถลบตารางได้ทุกจุด
โมเดลที่สร้างโดย AWS Clean Rooms ML จะถูกจัดเก็บโดยบริการ สามารถเข้ารหัสด้วยคีย์ AWS KMS ที่จัดการโดยลูกค้า และลูกค้าสามารถลบได้ทุกเมื่อ
ฉันจะยังคงปฏิบัติตามกฎหมายความเป็นส่วนตัวของข้อมูลที่บังคับใช้เมื่อใช้ AWS Clean Rooms ในการทำงานร่วมกับผู้อื่นได้อย่างไร
การเข้ารหัสและกฎการวิเคราะห์ของ AWS Clean Rooms ทำให้คุณสามารถควบคุมประเภทของข้อมูลที่คุณต้องการแชร์ได้แบบละเอียด ในฐานะผู้ใช้ข้อมูลร่วมกัน คุณต้องรับผิดชอบในการประเมินความเสี่ยงของการทำงานร่วมกันแต่ละรายการ รวมถึงความเสี่ยงในการระบุตัวตนอีกครั้ง และทำการตรวจสอบวิเคราะห์เองเพิ่มเติมเพื่อรับรองการปฏิบัติตามกฎหมายความเป็นส่วนตัวของข้อมูล หากข้อมูลที่คุณแชร์มีความละเอียดอ่อนหรือถูกควบคุม เราแนะนำให้คุณใช้ข้อตกลงทางกฎหมายที่เหมาะสมและวิธีการตรวจสอบเพื่อลดความเสี่ยงด้านความเป็นส่วนตัวเพิ่มเติมด้วย
มีข้อจำกัดการใช้งานสำหรับการทำงานร่วมกันใน AWS Clean Rooms หรือไม่
ใช่ ข้อกำหนดในการให้บริการของ AWS ห้ามกรณีการใช้งานบางอย่างสำหรับการทำงานร่วมกันใน AWS Clean Rooms
AWS Clean Rooms เป็นไปตามข้อกำหนด HIPAA หรือไม่
ใช่ โปรแกรมการปฏิบัติตามข้อกําหนดของ AWS HIPAA นั้นมีด้วย AWS Clean Rooms เป็นบริการที่เป็นไปตามข้อกำหนด HIPAA หากคุณมีข้อตกลงผู้ร่วมธุรกิจ (BAA) ที่ดําเนินการกับ AWS ตอนนี้คุณสามารถใช้ AWS Clean Rooms เพื่อสร้างการทํางานร่วมกันที่สอดคล้องกับ HIPAA ได้แล้ว หากคุณไม่มี BAA หรือมีคำถามเกี่ยวกับการใช้ AWS สำหรับแอปพลิเคชันที่สอดคล้องกับมาตรฐาน HIPAA โปรดติดต่อเราเพื่อสอบถามข้อมูลเพิ่มเติม
เมื่อต้องการเรียนรู้เพิ่มเติม ให้ดูแหล่งข้อมูลต่อไปนี้:
การวิเคราะห์ SQL
AWS Clean Rooms Spark SQL คืออะไร
คุณสามารถเลือกใช้เครื่องมือวิเคราะห์ Spark เพื่อเรียกใช้การสืบค้นโดยใช้ภาษา Spark SQL ในการทำงานร่วมกันของ AWS Clean Rooms ได้ AWS Clean Rooms Spark SQL มีขนาดการประมวลผลที่สามารถกำหนดค่าได้ เพื่อให้สามารถควบคุมประสิทธิภาพด้านค่าใช้จ่ายได้มากขึ้นเมื่อเรียกใช้เวิร์กโหลด SQL หากต้องการใช้งานการปกป้องความเป็นส่วนตัวแบบป้องกันการระบุตัวตนของ AWS Clean Rooms หรือใช้กฎการรวมหรือรายการการวิเคราะห์ในการทำงานร่วมกัน คุณจะต้องใช้ SQL เป็นเครื่องมือวิเคราะห์
AWS Clean Rooms Spark SQL ใช้อินสแตนซ์ประเภทเริ่มต้น CR.1X ซึ่งมี 4 vCPU, หน่วยความจำ 30 GB และพื้นที่จัดเก็บ 100 GB คุณสามารถเลือกที่จะจัดสรรทรัพยากรเพิ่มเติมเพื่อเรียกใช้เวิร์กโหลด Spark SQL ของคุณได้โดยการเลือกประเภทอินสแตนซ์ CR.4X ที่ใหญ่กว่า ซึ่งมี 16 vCPU, หน่วยความจำ 120 GB และพื้นที่จัดเก็บข้อมูล 400 GB ขนาดอินสแตนซ์ที่ใหญ่ขึ้นจะเป็นประโยชน์ต่อเวิร์กโหลด SQL ที่ประมวลผลข้อมูลจำนวนมากและดำเนินการวิเคราะห์ที่ซับซ้อน ซึ่งจะช่วยกระจายปริมาณงานไปยังทรัพยากรจำนวนที่มากขึ้นได้ เรียนรู้เพิ่มเติมเกี่ยวกับ vCPU หน่วยความจำ และพื้นที่เก็บข้อมูลที่เกี่ยวข้องสำหรับการกำหนดค่าแต่ละรายการที่นี่
ฉันจะกำหนดค่ากฎการวิเคราะห์ SQL ได้อย่างไร
ในกฎการวิเคราะห์ SQL คุณจะสามารถกำหนดค่าการควบคุมในระดับคอลัมน์ ที่ช่วยให้คุณกำหนดได้ว่าจะใช้แต่ละคอลัมน์ในการสืบค้นได้อย่างไร ตัวอย่างเช่น คุณสามารถระบุได้ว่าคอลัมน์ใดสามารถใช้เพื่อคำนวณสถิติแบบรวมได้ (เช่น SUM(price)) และคอลัมน์ใดสามารถใช้เพื่อรวมตารางของคุณเข้ากับสมาชิกคนอื่น ๆ ที่ทำงานร่วมกันได้ ในกฎการวิเคราะห์แบบรวม คุณสามารถกำหนดเกณฑ์การรวมขั้นต่ำที่แถวเอาต์พุตแต่ละแถวจะต้องเป็นไปตามเกณฑ์นั้นได้ด้วย และ AWS Clean Rooms จะกรองแถวที่ไม่เป็นไปตามเกณฑ์ขั้นต่ำออกโดยอัตโนมัติ
ฉันสามารถดูได้หรือไม่ว่าสมาชิกในการทำงานร่วมกันทำการสืบค้นใดกับข้อมูลของฉัน
ใช่ คุณจะกำหนดค่า AWS Clean Rooms ให้เผยแพร่ข้อมูลบันทึกที่ทำการสืบค้นใน Amazon CloudWatch Logs ได้ ด้วยกฎการวิเคราะห์แบบกําหนดเอง คุณยังสามารถตรวจทานการสืบค้น (จัดเก็บไว้ในเทมเพลตการวิเคราะห์) ก่อนที่จะเรียกใช้ในการทํางานร่วมกันได้อีกด้วย
AWS Clean Rooms Differential Privacy
ความเป็นส่วนตัวที่แตกต่างคืออะไร
ความเป็นส่วนตัวที่แตกต่างเป็นเฟรมเวิร์กที่ผ่านการพิสูจน์ทางคณิตศาสตร์แล้วเพื่อช่วยในการคุ้มครองความเป็นส่วนตัวของข้อมูล ประโยชน์หลักที่อยู่เบื้องหลังความเป็นส่วนตัวที่แตกต่างกันคือการช่วยปกป้องข้อมูลในระดับบุคคล โดยการเพิ่มจํานวนการสุ่มที่ควบคุม - เสียงรบกวน - เพื่อปิดบังการมีหรือไม่มีบุคคลใดบุคคลหนึ่งในชุดข้อมูลที่กําลังวิเคราะห์
AWS Clean Rooms Differential Privacy ดีกว่าการปรับใช้โอเพนซอร์สที่มีอยู่อย่างไร
AWS Clean Rooms Differential Privacy ช่วยคุณปกป้องความเป็นส่วนตัวของผู้ใช้ด้วยการควบคุมที่ได้รับการสนับสนุนทางคณิตศาสตร์และใช้งานง่ายในไม่กี่คลิก ในฐานะความสามารถในการจัดการเต็มรูปแบบของ AWS Clean Rooms คุณไม่จําเป็นต้องมีประสบการณ์ด้านความเป็นส่วนตัวที่แตกต่างมาก่อนเพื่อช่วยคุณป้องกันการระบุตัวตนผู้ใช้ของคุณอีกครั้ง AWS Clean Rooms Differential Privacy ทําให้การมีส่วนร่วมของข้อมูลของบุคคลใดๆ สับสนในการสร้างข้อมูลเชิงลึกโดยรวมในการทํางานร่วมกัน เพื่อให้คุณสามารถเรียกใช้การสืบค้น SQL ที่หลากหลายเพื่อสร้างข้อมูลเชิงลึกเกี่ยวกับแคมเปญโฆษณา การตัดสินใจลงทุน การวิจัยทางคลินิก และอื่นๆ
ฉันจะใช้ AWS Clean Rooms Differential Privacy ได้อย่างไร
คุณสามารถเริ่มใช้ AWS Clean Rooms Differential Privacy ได้เพียงไม่กี่ขั้นตอนหลังจากเริ่มต้น หรือเข้าร่วมการทํางานร่วมกันใน AWS Clean Rooms ในฐานะสมาชิกที่มีความสามารถในการให้ข้อมูล หลังจากที่คุณสร้างตารางที่กําหนดค่าแล้ว ซึ่งเป็นการอ้างอิงถึงตารางของคุณในแค็ตตาล็อกข้อมูลของ AWS Glue คุณเพียงแค่เลือกที่จะเปิดความเป็นส่วนตัวที่แตกต่างในขณะที่เพิ่มกฎการวิเคราะห์แบบกําหนดเองลงในตารางที่กําหนดค่าไว้เมื่อใช้กลไกการวิเคราะห์ SQL จากนั้น คุณจะเชื่อมโยงตารางที่กําหนดค่าไว้กับการทํางานร่วมกันของ AWS Clean Rooms และกําหนดค่านโยบายความเป็นส่วนตัวที่แตกต่างกันในการทํางานร่วมกันเพื่อทําให้ตารางของคุณพร้อมใช้งานสําหรับการสืบค้น คุณสามารถใช้นโยบายเริ่มต้นเพื่อตั้งค่าให้เสร็จสมบูรณ์อย่างรวดเร็ว หรือปรับให้ตรงกับความต้องการเฉพาะของคุณ หากต้องการใช้การปกป้องความเป็นส่วนตัวแบบป้องกันการระบุตัวตนของ AWS Clean Rooms ในการทำงานร่วมกัน คุณจะต้องใช้ SQL เป็นเครื่องมือวิเคราะห์
เมื่อตั้งค่า AWS Clean Rooms Differential Privacy แล้ว พาร์ทเนอร์การทํางานร่วมกันของคุณสามารถเริ่มเรียกใช้การสืบค้นบนตารางของคุณได้โดยไม่ต้องมีความเชี่ยวชาญในแนวคิดความเป็นส่วนตัวที่แตกต่างหรือการตั้งค่าเพิ่มเติมจากพาร์ทเนอร์ของพวกเขา ด้วย AWS Clean Rooms Differential Privacy ผู้เรียกใช้การสืบค้นสามารถเรียกใช้การวิเคราะห์แบบกําหนดเองและยืดหยุ่น รวมถึงรูปแบบการสืบค้นที่ซับซ้อนด้วยนิพจน์ตารางทั่วไป (CTE) และฟังก์ชันรวมที่ใช้กันทั่วไป เช่น COUNT และ SUM
การประมวลผลข้อมูลที่เข้ารหัสลับ
การประมวลผลแบบเข้ารหัสคืออะไร
การประมวลผลแบบเข้ารหัสคือวิธีการปกป้องและเข้ารหัสข้อมูลที่ละเอียดอ่อนขณะที่กำลังใช้งานข้อมูล โดยสามารถเข้ารหัสข้อมูลได้เมื่อไม่มีการใช้ข้อมูลขณะจัดเก็บข้อมูล เมื่อมีการเคลื่อนย้ายข้อมูลขณะส่งข้อมูล และเมื่อกำลังใช้ข้อมูล การเข้ารหัสหมายถึงการแปลงข้อมูลที่เป็นข้อความธรรมดาให้กลายเป็นข้อมูลแบบเข้ารหัสที่ไม่สามารถถอดรหัสได้หากไม่มี “คีย์” เฉพาะ จุดตัดชุดข้อมูลส่วนตัว (PSI) คือการประมวลผลแบบเข้ารหัสประเภทหนึ่งที่ทำให้ผู้ที่มีชุดข้อมูลตั้งแต่สองรายขึ้นไปสามารถเปรียบเทียบข้อมูลเวอร์ชันเข้ารหัสได้เพื่อทำการประมวลผล การเข้ารหัสเกิดขึ้น ณ ที่นั้นโดยใช้คีย์ลับร่วมของผู้ร่วมงาน C3R พร้อมใช้งานสำหรับทั้งกลไกการวิเคราะห์ Spark SQL หรือกลไกการวิเคราะห์ SQL
การประมวลผลแบบเข้ารหัสสำหรับพื้นที่ปลอดภัย (C3R) คืออะไร
AWS Clean Rooms มี Cryptographic Computing for Clean Rooms (C3R) อยู่ด้วย ซึ่งให้ตัวเลือกในการเข้ารหัสข้อมูลล่วงหน้าโดยใช้เครื่องมือการเข้ารหัสฝั่งไคลเอ็นต์ ซึ่งก็คือ SDK หรืออินเทอร์เฟซบรรทัดคำสั่ง (CLI) ที่ใช้คีย์ลับร่วมกับผู้เข้าร่วมคนอื่นในการทำงานร่วมกันใน AWS Clean Rooms วิธีนี้จะเข้ารหัสข้อมูลขณะกำลังสืบค้นข้อมูล